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Abstract

Time: Week 32, August 8-12, 2022

Lectures: 10 x 45 min

Coordinator: Stefan Geiss

Credits: 2 ETCP

Evaluation: Pass/fail based on a homework returned after the course.

Description of the course

Contents of the course

(0) Introduction, motivation
(1) A short introduction to stochastic differential equations (SDE). Existence and uniqueness

(strong & weak solutions). Fokker-Planck equation. Old and new examples from transport
models.

(2) A visit to the mean field approximation. An introduction to McKean-Vlasov SDEs, moti-
vated by turbulent flow models.

(3) Numerical approximation for SDEs. Time integration schemes for SDEs; Sampling algo-
rithms for McKean-Vlasov SDEs. An introduction to the main numerical analysis tools
and results.

If time permits:

(4) Modelling strong interactions between objects immersed in a flow, particles and walls.
Introduction to SDEs with boundaries : reflected & confined SDEs.

(5) Introduction to the ergodic theory for SDEs. Stationary phenomena and equilibrium. Fast
and slow variables.

Learning outcomes The main objective of these lectures is to give a concise overview of the
theory of stochastic differential equations (SDE), as modelling and numerical tools. Starting
form the basic properties of SDEs, the lectures will present different aspects of the theory, moti-
vated and illustrated by their use in turbulent transport and its simulation. Stochastic differential
equation are used in physics of fluids and in many related engineering approaches for industrial
and environmental applications. SDEs’ theory and turbulent transport have a long common his-
tory. Yet the design of predictive simulation tools for pollutant dispersion, sedimentation in the
ocean, or many energy production processes, greatly challenge researches in the field of SDEs
and their simulation, combining together all the aspects presented in this course.

Prerequisites Usual notions on measures, integration and probability theory. Brownian mo-
tion, Itô’s formula, notion on continuous time martingales and Markov processes.
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Chapter I. Introduction & motivation

Notation

• r.v. random variable

• ‖‖ Euclidean norm of Rd.

• We denote by CT the space C([0, T ];Rd).

• C2
b (Rd) is the space of bounded continuous functions with bounded continuous derivatives

uo to the order 2.

• Let (E, E) be a measurable space with its sigma algebra B;M1(E) is the set of probability
measures on E.

• We will use several bracket symbols which, depending on the context, may denote.

– a statistical mean 〈X〉.
– a duality bracket 〈f, p〉 in C∞c , (C

∞
c )′, for a distribution p in (C∞c )′ and f a test

function.

– For p in L1
loc, the duality bracket L1

loc, L
∞;

– For p in L2, the scalar product in L2, Banach space;

– For p a probability measure on a space E, f bounded and measurable on E, 〈f, p〉 =
E[f(X)].

• ∂A refers to the boundary of the set A
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Chapter I. Introduction & motivation: fluid mechanics and stochastic processes

Chapter I

Introduction and motivation: fluid
mechanics and stochastic processes

I.1 Some basic notions of fluid mechanics and the Navier Stokes
equations

A substances that flows is called as fluid.
Fluid mechanics is the branch of science that deals with the study of fluids (liquids and gases)

in a state of rest or motion.
Fluid mechanics is an important subject of civil engineering, Mechanical and Chemical engi-

neering, Material engineering.
Its various branches are fluid statics, fluid kinematics and fluid dynamics.
Consider an open volume D in Rd, d = 2, 3 generally.
The motion of a fluid in D is describe by its velocity (as in solid mechanics). But contrary to

solid mechanics where velocity have to be known just in few points, in fluid mechanics, predict
the behaviour of a flow requires to compute the velocity field (t, x) 7→ v(t, x) in all points in a
given time interval [0, T ] and space domain D occupied by the flow. The way the acceleration at
a given point

D

Dt
v(t, x)

depends to other flow quantities is describes by the Navier Stokes equations. Here D
Dt
v is the

material derivative of the velocity:

D

Dt
v(t, x) :=

∂

∂t
v(t, x) + (v(t, x) ·∇)v(t, x).

1
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Chapter I. Introduction & motivation: fluid mechanics and stochastic processes

I.1.1 The conservation of mass

The first equation that constitute the Navier Stokes system is the conservation of mass. We
denote by (t, x) 7→ ρ(t, x) the mass density of fluid, that can varies in time and space with the
flow motion.

Let Vol be an arbitrary open volume in the domain of the flow D with sufficiently1 smooth
boundary surface ∂Vol to admit an outward pointing unit normal vector field ∂Vol 3 s 7→ n(s).
Let fix this arbitrary volume constant in time. Then the mass inside this volume is

m(t) =

∫
Vol
ρ(t, x)dx.

Th fluid is moving freely across Vol. So, if mass in this small Vol is conserved, the instantaneous
rate of change of mass in Vol must be equal to the flux of mass (ρv)(t, x) across the surface
boundary ∂Vol:

d

dt
m(t) =

d

dt

∫
Vol
ρ(t, x)dx = −

∫
∂Vol

(
(ρv)(t, s) ·n(s)

)
ds.

Assuming ρ, v sufficiently smooth, assuming n the outward normal to Vol sufficiently smooth,
we apply the Divergence Theorem I.B.1, an integration by parts formula that gives :∫

Vol
∇ · (ρv)(t, x)dx =

∫
∂Vol

(ρv)(t, s) ·n(s)ds. (I.1)

Inserting this in the conservation identity leads to∫
Vol

(∂tρ+∇ · (ρv)(t, x))dx = 0.

Since Vol is an arbitrary volume, it follows

∂tρ+∇ · (ρv)(t, x) = 0, for all (t, x) ∈ [0, T ]×D. (I.2)

This is the first equation of mathematical fluid dynamics, which is called Continuity equation.

Incompressibility. Assume now, that the flow is incompressible. Incompressible flow refers
to a flow in which the material density is constant in time within a fluid parcel (an infinitesimal
volume that moves with the flow velocity). This means that

Dρ

Dt
=
∂ρ

∂t
+ v ·∇ρ = 0, (I.3)

Introducing this last relation in the Continuity equation leads to

∂tρ+∇ · (ρv)(t, x) = ∂tρ+ (v ·∇ρ)(t, x) + ρ(∇ · v)(t, x) = ρ(∇ · v)(t, x) = 0 (I.4)

1We need to define a normal to the boundary that requires generally C1 regularity of the surface manifold, see
also I.B
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Chapter I. Introduction & motivation: fluid mechanics and stochastic processes

In many applications, flows can be considered as incompressible. This hypothesise could van-
ish depending on (large velocity) or (large) pressure. Let say, that for most environment ap-
plication, medical application, and a large set of industrial applications flow can be considered
incompressible.

Assume also that the flow is homogeneous (composed of one fluid only) and then

ρ(t, x) = ρ0 > 0, for all (t, x) ∈ [0, T ]×D.

and the incompressibility condition reduces to

(∇ · v) = ∂x1v1 + ∂x2v2 + ∂x3v3 = 0, for all (t, x) ∈ [0, T ]×D

An equivalent statement that implies incompressibility is that the divergence of the flow veloc-
ity is zero. Thus, the conservation of mass for an incompressible, homogeneous fluid imposes a
constraint on the velocity only.

I.1.2 The momentum equation

Conservation of momentum refers to the formulation of the Newton’s second law of motion:

net force = mass × acceleration

Again, this law, easy to apply in solid mechanics is more intricate for continuum mechanics.

Acceleration. is the time derivative of the velocity. But here again, material derivative have
to be applied. So acceleration is

Dv

Dt
≡ ∂v

∂t
+ v ·∇v.

Internal forces. The foundation of fluid mechanics, or continuum mechanics, is the stress
principle of Cauchy. The idea of Cauchy on internal contact forces: Internal forces are forces
which a fluid exerts on itself in trying to get out of its own way. These include pressure and
viscous drag that a fluid element exerts on the adjacent element. The internal forces of a fluid
are contact forces, i.e., they act on the surface of the fluid element Vol. Let τ denote this internal
force vector, which is called Cauchy stress vector.

Thus, the equation for the conservation of linear momentum is, for an arbitrary constant-in-time
volume Vol: ∫

Vol
ρ0(∂tv + (v∇v)(t, x)dx =

∫
Vol
Fext(t, x)dx+

∫
∂Vol

τ (t, s)ds. (I.5)

Writing τ = Sn, by divergence theorem∫
Vol
ρ0(∂tv + (v∇v)(t, x)dx =

∫
Vol
Fext(t, x)dx+

∫
Vol

(∇ ·S)(t, x)dx. (I.6)
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Chapter I. Introduction & motivation: fluid mechanics and stochastic processes

It then turns that the stress tensor S is decomposing in viscous stress and pressure effect :

S = V− pI

where p(t, x) is the (scalar) pressure field, and V is the viscous stress tensor. The minus sign in
front of p comes from the fact that the pressure acts in the normal inward direction to the surface,
whereas the divergence theorem operates with the outward unit normal.

Friction between fluid particles can only occur if the particles move with different velocities.
For this reason, the viscous stress tensor depends on the gradient of the velocity. For reason of
symmetry, it depends on the symmetric part of the gradient, the so-called velocity deformation
tensor

D(v) =
1

2

(
∇v + (∇v)t

)
.

The antisymmetric part

O(v) =
1

2

(
∇v − (∇v)t

)
summarises the locally rotative motion part.

If the velocity gradients are not too large, one can assume that the dependency V depends
linearly on the gradient, leading to the model :

V = 2µD(v) + (ζ − 2

3
µ)(∇ · v).

where µ and ζ are the first and second order viscosities of the fluid. The viscosity µ is also called
dynamic or shear viscosity.

With the incompressibility condition, this reduce to

V = 2µD(v).

Moreover

∇ · (∇v) = ∆v + (∇v)t

where ∆ is the Laplacian operator

∆ = ∂2
x21

+ ∂2
x23

+ ∂2
x23
.

And

∇ · (∇v)t = ∇(∇ · v) = 0,

by the incompressibility hypothesis. This leads to the∫
Vol
ρ0(∂tv + (v∇v)(t, x)dx =

∫
Vol
Fext(t, x)dx+

∫
Vol
∇p+ µ∆v(t, x)dx. (I.7)

4
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Chapter I. Introduction & motivation: fluid mechanics and stochastic processes

, we end up with this PDE involving the two state variables, the velocity field v(t, x) as a 3D
vector field and the pressure p(t, x)

∂tv(t, x) + (v ·∇)v(t, x) +
1

ρ0

∇p(t, x) = ν∆v(t, x), (t, x) ∈ (0.T ]×D,

(∇ · v)(t, x) = 0, (t, x) ∈ [0, T ]×D
v(0, x) = v0(x), x ∈ D.

(I.8)

from a purely mathematical point of view, the very important problem of existence and smooth-
ness of the solutions to Equation (1) remains largely unsolved to this day.

visit The Clay Mathematics Institute’s Navier–Stokes equation prize
However, theoretical understanding of the solutions to these equations is incomplete. In par-

ticular, solutions of the Navier–Stokes equations often include turbulence, which remains one
of the greatest unsolved problems in physics, despite its immense importance in science and
engineering.

I.2 Complex flows : from laminar flows to turbulent flows

Turbulence is the time-dependent chaotic behaviour observed in many fluid flows, as illustrated
in Figures I.1 and I.2

Figure I.1: Typical streamlines in laminar (top) or turbulent flows (bottom).

5
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Chapter I. Introduction & motivation: fluid mechanics and stochastic processes

Figure I.2: The smoke of a candle, laminar at the bottom, turbulent at the top.

To analyse this phenomena, from a physical, mathematical, even numerical point of view, it is
important to consider the Navier Stokes equation in a generic, universal way, without referring
to a given application problem.

This is done with the help of characteristic quantities of a flow problem, typically

• L [m] – a characteristic length scale of the flow problem,

• U [m/s] – a characteristic velocity scale of the flow problem,

• T ∗ [s] – a characteristic time scale of the flow problem,

A change of variable is made in equation (I.8). Considering L = U = T ∗ = 1, we stay with
(I.8) and we call Re = 1

ν
the Reynolds number (or more precisely Re = UL

ν
, with the change of

variables x = x̃
L

, v = ṽ
U

and t = t̃
T ∗

, where the tilded variables are the old ones).
When the Reynolds number is hight turbulence may occur, eventually after a transition.

Reynolds decomposition.
Reynolds decomposition is a mathematical technique used to separate the mean value of a

quantity from its fluctuations.
As an example of turbulent phenomena, wind near the surface is a turbulent phenomena. It is a

continuous time phenomena, but velocity observation (U
(i),obs
t , i = 1, 2, 3, t ≥ 0), are measured

at discrete time, as reported in Figure I.3. Here t is incremented each 1
10

seconds.

6

The 31st Jyväskylä Summer School / Course MA3 / August, 8 to 12, 2022 / Mireille Bossy



Chapter I. Introduction & motivation: fluid mechanics and stochastic processes

Figure I.3: Time series of the measurements of wind velocity vector, taken at a mast of 30 meters height with
a sonic anemometer, obtained from the open observation platform of SIRTA (Site Instrumental de Recherche par
Télédétection Atmosphérique. (Haeffelin et al. [Haeffelin et al., 2005])).

In first column, ‖U obs
t ‖ is the Instantaneous wind speed.

In the middle column
〈
U obs,i
t

〉
= 1

ζ

∑
t−ζ≤s<t

U obs
s is the mean velocity computed for the same

four days and for each wind velocity components.
The last column presents a characteristic quantity to qualify the strongness of turbulence phe-

nomena. It is not necessarily constant in time.

It =

√〈
‖Uobs

t −〈Uobs
t 〉
∥∥2
〉

√
3‖
〈
Uobs
(d)

〉
‖

is the Turbulent intensity.

In practice, it is very common to compute
〈
U obs
t

〉
by an average in time over an interval of 10

minutes to 60 minutes, corresponding to a minimum in the wind power spectral density.
Here we choose with the time-window ζ = 40 minutes.

If we consider the solution of the Navier Stokes equation (I.8), the chaos observed in the flow
field may be interpreted as randomness. What we interpret as a statistical mean on observation,
can be seen on the velocity field (t, x) 7→ v(t, x) as the introduction of the hidden variable ω,
that transforms (t, x) 7→ v(t, x) to a random field (t, x) 7→ v(t, x, w), where implicitly we have
introduced a probability space (Ω,F ,P) (even if it not well identified). And now the ensemble
average operator 〈〉 is assimilated to the expectation operator under P :

〈v〉(t, x) :=

∫
Ω

v(t, x, ω)dP(ω) = E[v(t, x)].

7
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Chapter I. Introduction & motivation: fluid mechanics and stochastic processes

Reynolds decomposition introduces means and fluctuations:

v(t, x, ω) = 〈v〉(t, x) + v′(t, x, ω),

p(t, x, ω) = 〈p〉(t, x) + p′(t, x, ω).

The random field v′(t, x, ω) is named the turbulent velocity, same for the pressure decomposi-
tion.

Kolmogorov scales. In his 1941 theory (called K41), Andrey Kolmogorov introduced the idea
that the smallest scales of turbulence are universal (similar for every turbulent flow) and that they
depend only on ν the already introduced kinematic viscosity, and on the dissipation ε :

∂t〈v〉(t, x) + 〈v〉 ·∇〈v〉+
∑
j

∂xj
〈
v′ v′j

〉
+

1

ρ0

∇〈p〉(t, x) = 0, (t, x) ∈ (0, T ]×D,

∇ · 〈v〉(t, x) = 0, (t, x) ∈ [0, T ]×D
〈v〉(0, x) = v̄0(x), x ∈ D.

Typically

• Kolmogorov length scale η =

(
ν3

ε

)1/4

.

• Kolmogorov time scale τη =
(ν
ε

)1/2

.

• Kolmogorov velocity scale uη = (νε)1/4.

The dissipation ε is a complex quantity to estimate precisely, but for most of applications, a
rough estimation of the Kolmogorov length scale by

ε ' U3

L

in engineering application, leads to

η '
(
ν3L

U3

)1/4

good enough to get an order of magnitude. This has the following consequence:
For most of industrial or environmental flows, typical values of η are in [50µm, 1mm].
This has some dramatic implication on the numerical computation of the solution of the Navier

Stokes equation.
In a turbulent situation, a numerical method solving the Navier Stokes equation should have a

resolution in space and time below the Kolmogorov scales. For L = 1 m, a cube of volume 1 m3

8

The 31st Jyväskylä Summer School / Course MA3 / August, 8 to 12, 2022 / Mireille Bossy



Chapter I. Introduction & motivation: fluid mechanics and stochastic processes

full of air, with ν = 1.610−5m2/s. For a typical velocity of 1 m/s, we need more than 1015/4 grid
points in each 3 directions, so an apparently simple case like that needs 1010 grid points! The
same story is repeated for the time resolution.

Note that with Re = UL
ν

,

η ' L

Re3/4
.

This is far beyond our computational capabilities. Any engineering problem involving tur-
bulence simply cannot be solved directly with the Navier Stokes equations. One needs to use
models to deal with practical problems.

The direct simulation of turbulence by solving the Navier Stokes equations is reserved for
a few ideal and simple problems, which today allow to refine the physical understanding of
turbulence and thus to refine the models. This is a very active area of research that complements
experimental measurements. This called the Direct numerical Simulation approach (DNS).

I.2.1 The Reynolds Navier Stokes equations.

In engineering, a turbulent model delivers statistical information on the flow fields (velocity,
pressure, additional scalar like temperature). The computation of the two first moments (mean
and variance) f these quantities are already sufficient to manage a lot of engineering issues (air-
craft, turbine design, engine, many steps in the energy production processes, civil engineering in
general).

Most of the approaches use (directly of indirectly) the Reynolds decomposition operator with
a specific mean 〈〉 choice.

If we assume that the permutation of the mean operator 〈〉 with de derivatives of the flow fields
is allowable, we can apply it to the Navier Stokes equation (I.8), to get the Reynolds Averaged
Navier Stokes equations (or RANS equations).

Assuming again incompressibility and constant mass density ρ0,

∂t〈v〉(t, x) + 〈v ·∇v〉(t, x) +
1

ρ0

∇〈p〉(t, x) = ν∆〈v〉(t, x), (t, x) ∈ (0, T ]×D,

∇ · 〈v〉(t, x) = 0, (t, x) ∈ [0, T ]×D
〈v〉(0, x) = v̄0(x), x ∈ D.

(I.9)

Writing it by component:

∂t〈vi〉(t, x) + 〈v ·∇vi〉(t, x) +
1

ρ0

∂xi〈p〉(t, x) = ν∆〈vi〉(t, x), (t, x) ∈ (0.T ]×D,∑
i

∂xi〈vi〉(t, x) = 0, (t, x) ∈ [0, T ]×D

〈v〉(0, x) = v̄0(x), x ∈ D.

(I.10)

9
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Chapter I. Introduction & motivation: fluid mechanics and stochastic processes

But also, from the Navier Stokes mass equation we have∑
i

∂xi〈vi〉+
∑
i

∂xiv
′
i = 0

which allows to write that the divergence of the fluctuation is also zero:

∇ · v′ =
∑
i

∂xiv
′
i = 0.

So, since the mean of the fluctuation is zero also, we get

〈v ·∇vi〉
by def of div

=

〈∑
j

vj∂xjvi

〉
by 〈v′〉 = 0

=
∑
j

〈vj〉∂xj〈vi〉+

〈∑
j

v′j∂xjv
′
i

〉
added last term is zero by div free

=
∑
j

〈vj〉∂xj〈vi〉+

〈∑
j

v′j∂xjv
′
i

〉
+

〈∑
j

∂xjv
′
jv
′i

〉
making appear the R. Tens.

=
∑
j

〈vj〉∂xj〈vi〉+
∑
j

∂xj
〈
v′iv
′
j

〉
〈v ·∇v〉 = 〈v〉 · 〈∇v〉+

∑
j

∂xj
〈
v′ v′j

〉
The last term in this equality involves the correlation tensor of the velocity fluctuation

Rij =
〈
v′iv
′
j

〉
named the Reynolds tensor. This Reynolds tensor constitutes a new set of unknown variables,
and the manipulation of the NS equations allows to have also an equation of the Reynolds stress
tensor

∂t
〈
v′iv
′
j

〉
+
(
〈v〉 ·∇

〈
v′iv
′
j

〉)
= −

3∑
k=1

∂xk
〈
v′iv
′
jv
′
k

〉
− 1

ρ0

〈
v′j∂xip

′ + v′i∂xjp
′〉︸ ︷︷ ︸

velocity pressure gradient tensor Πij

+ν4x

〈
v′iv
′
j

〉
+ p′

ρ0

(
∂xjv

′
i + ∂xiv

′
j

)

+ 2 ν

3∑
k=1

〈
∂xkv

′
i∂xkv

′
j

〉
︸ ︷︷ ︸

dissipation tensor εij

−
3∑

k=1

(
〈v′iv′k〉∂xk〈vi〉+

〈
v′jv
′
k

〉
∂xk〈vj〉

)
︸ ︷︷ ︸

turbulence production tensor Pij
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Chapter I. Introduction & motivation: fluid mechanics and stochastic processes

(the second line are the transport terms.)

Most often, models that complete and close the RANS equations work on reduced equation
form (typically taking the trace on the tensors) :

The half trace of the Reynold tenor is called the :

turbulent kinetic energy tke(t, x) :=
1

2

3∑
i=1

〈v′iv′i〉(t, x).

Together with the dissipation that we have already introduced

pseudo-dissipation ε(t, x) := ν

3∑
i,j=1

〈
∂xjv

′
i ∂xjv

′
i

〉
(t, x).

This quantity is almost always confusingly (and quantitatively) similar to the turbulent dissi-
pation that involves the symmetric part of the turbulent velocity gradient tensor instead of the
turbulent velocity gradient tensor itself.

dissipation ε(t, x) = 1
2
ν

3∑
i,j=1

〈
(∂xjv

′
i + ∂xiv

′
j)

2
〉
(t, x).

Nevertheless there are still new unknown and we need to introduce parametrization (a relation
between ε and tke to simplify this equation, eventually to eliminate it.

But we will come back to this question with stochastic models framework.

I.3 When stochasticity comes in the story : Lagrangian fluc-
tuation

I.3.1 Fluid particle

A Fluid particle or a fluid parcel is a very small amount of fluid, identifiable throughout its
dynamic history while moving with the fluid flow. It is also what is called a Lagrangian tracer.

If we consider that we can solve exactly/precisely the Navier Stokes equation, we can follow
the trajectory of a tracer (a particle without mass) carried by the stream. It is a continuous time
series (Xt, Vt, t ∈ [0, T ]), following the equation :

dXt = Vt dt, X0 given
Vt = v(t,Xt), V0 = v(0, X0)

Is that possible to describe a process (at) such that

dVt = at dt?

The answer to this question depends strongly on the model level of description.

11
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Chapter I. Introduction & motivation: fluid mechanics and stochastic processes

I.3.1.1 Models at the microsclale (DNS) view point.

At this micro level, dVt should be represented by the Lagrangian acceleration, as material
derivative

dVt =
(
∂tv(t,Xt) + v(t,Xt) ·∇v(t,Xt)

)
dt.

Figure I.4: Tracer particle encountering a vortex filament in turbulence. The tracer trajectory
is coloured according to its instantaneous acceleration magnitude, and the blue-green volume-
rendering corresponds to the intensity of the vorticity field. The particle acceleration components
oscillate strongly in time (inset, in Kolmogorov units) when encountering the intense vortex
filament. The root of the squared acceleration, coarse-grained over a few Kolmogorov time
scales, varies only weakly during such an event (inset, black curve). The dashed line indicates
the instant in time at which the vorticity field is visualized and the tracer is rendered as a sphere.
(picture borrowed from [Bentkamp et al., 2019]).

Studying the statistical property of this times series, physicists measure the autocorrelation
process of the Lagrangian velocity:

Depending on the complexity of models (on what we can measure), on the hypothesis we can
make onto the turbulence phenomena :

• Isotropic turbulence : measured statistics are the same in the three spatial directions; when
we consider a flow far from boundaries for example; versus non isotropic turbulence where
typically we are close to boundaries that ”generate” the chaos in the flow.

Isotropic turbulence = invariance by rotation of all the statistics

12
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Chapter I. Introduction & motivation: fluid mechanics and stochastic processes

• Homogeneous turbulence = invariance by translation of all the statistics

Assume that we are near to the idealized situation of HIT. Assume that the observed velocity pro-
cess is stationary in time with mean velocity µ2. Then we can define the (temporal) Lagrangian
autocorrelation function of the velocity as

τ 7→ ρL(τ) =
〈(Vt+τ − µ) · (Vt − µ)〉

〈(Vt − µ)2〉
.

Remark I.3.1. Note that in non-isotropic situation, we may measure

τ 7→ ρL(τ, ij) =

〈
(V i

t+τ − µi)(V
j
t − µj)

〉√
〈(V i

t+τ − µi)2〉
〈
(V j

t+τ − µj)2
〉

We may assume that the autocorrelation function is going to zero with τ increasing, and that
the integral time

TL =

∫ +∞

0

ρL(τ) dτ

is well defined.
Gaussian processes with autocorrelation of the form ρL(τ) = exp(−τ/TL) are well known

examples of stochastic Itô diffusion processes:
Considering a probability space (Ω,F ,P), endowed with a Brownian motion (Wt)

Brownian motion and Ornstein-Uhlenbeck processes. Brownian motion is named after the
botanist Robert Brown who in 1827 described the motion of fine particles (pollen) suspended in
a fluid. Between Brown’s description and the current definition of Brownian motion, this ob-
ject attracted the attention of physicists such as Einstein and Smoluchowski and mathematicians
Wiener, Levy and Itô.

Definition I.3.2. A real (standard) Brownian motion on R+ is a process (W ) = (Wt, t ≥ 0)
valued in R and with continuous trajectories, such that

– W0 = 0.

– Any increment Wt −Ws where 0 ≤ s < t, follows a Gaussian distribution of variance t− s.

– For all 0 = t0 < t1 < t2 < . . . < tn, the increments
(
Wti+1

−Wti ; 0 ≤ i ≤ n
)

are independent.

At t ≥ 0 fixed, Wt is a Gaussian distribution v.a. N (0, t) and

P(Wt ∈ [x, x+ dx]) = p(x)dx =
1√
2πt

exp(−x
2

2t
) dx.

2A stationary process is a stochastic process whose joint probability distribution does not change when shifted
in time or space.
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Chapter I. Introduction & motivation: fluid mechanics and stochastic processes

Figure I.5: (a) Temporal Lagrangian autocorrelation function ρL(τ), computed for a range
of forcing levels in the FWT. This function is decaying approximately exponentially, ρL(τ) '
exp(−τ/TL), where TL is Lagrangian integral time. (b) Spatial Lagrangian autocorrelation

function r 7→ ρL(r) =

〈(
Vt(r0+r)−µ) · (Vt(r0)−µ)

)〉
〈(Vt(r0)−µ)2〉 computed for the same conditions. As the tur-

bulence energy is increased, Lagrangian integral length remains roughly constant in the broad
range of forcing levels.

These are autocorrelation measured for tracers submitted to different levels of (mean) accelera-
tion ”measured in g”, corresponding to levels of energy introduced in the system. The system is
assumed at equilibrium (stationary process), with µ denoting 〈Vt〉.

Picture borrowed from [Francois et al., 2013].
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Chapter I. Introduction & motivation: fluid mechanics and stochastic processes

In particular, Wt ∈ [−1.96
√
t, 1.96

√
t] with a probability of 95% (because P(|Z| ≤ 1.96) '

0.95 when Z is of Gaussian distribution N (0, 1)). It can be shown that this property holds for
the whole Brownian trajectory3.

The existence of a Brownian motion, in the sense of the previous definition, is not obvious at all.
See for example Wiener’s construction in [Karatzas and Shreve, 1988], or [Revuz and Yor, 1991].

Given the Brownian motion (W ), the Ornstein-Uhlenbeck (OU) process on the same probabil-
ity space (Ω,F ,P), is constructed as the unique solution of the following stochastic differential
equation :

dξt = − 1

TL
ξtdt+

σ

TL
dWt,

whose solution writes (using the variation of constants method, applying the Itô Lemma to
f(t, ξt) = ξt exp(t/TL))

ξt = ξ0 exp(− t

TL
) +

∫ t

0

σ

TL
exp(−(t− s)/TL)dWs.

Using the Itô integral of a deterministic function tip, we deduce that (ξ) is a Gaussian process
and

ξt = N
(
ξ0 exp(− t

TL
),

∫ t

0

σ2

T 2
L

exp(2(t− s)/TL)ds =
1

2

σ2

TL
(1− exp(−2

t

TL
)

)
.

Assuming ξ0 independent of (W ) and distributed according to

ξ0 ' N (0,
1

2

σ2

TL
),

we immediately get that the process is stationary with

∀t ≥ 0, ξt ' N (0,
1

2

σ2

TL
),

and

∀t, s ≥ 0, E[ξt ξs] =
1

2

σ2

TL
exp

(
− 1

TL
(t ∨ s− t ∧ s)

)
.

Finally, we have that (ξ · ) is a good candidate to model velocity autocorrelation with

ρξ(τ) = E[ξτ ξ0](
1

2

σ2

TL
)−1 = exp

(
− τ

TL

)
3∀t ≥ 0,

P(sup
s≤t
|Ws| ≤ 2

√
t) ' 90%.
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Chapter I. Introduction & motivation: fluid mechanics and stochastic processes

and a model form (for a scalar Vt the speed velocity, or for one component of the velocity)

dXt = Vtdt

Vt = 〈v〉(t,Xt) + V ′t
dV ′t = dξt

Other information are available from the Kolmogorov 1941 Theory: for example, one expects
the Lagrangian second-order structure function to behave linearly in both the time scale τ and
the mean dissipation rate ε : 〈

(V ′t+τ − V ′t )2
〉

= C0ε τ.

But 〈
(V ′t+τ − V ′t )2

〉
= σ2

〈
(ξt+τ − ξt)2

〉
= σ(2

〈
ξ2
〉
− 2ρξ(τ))

=
σ2

TL
(1− exp(− τ

TL
))

' σ2

T 2
L

τ +O((
τ

TL
)2)

So we identify
σ =

√
C0ε TL

to fit the first and second moments of measured statistics.

Behaviour as TL going to zero. On figure I.5, we can observe that the Lagrangian integral
time is decreasing with the ”energy/acceleration” introduced in the turbulent system, leading to
a more and more decorrelation of the velocity fluctuation.

Considering TL as a parameter in the equivalent Langevin SDE

dXt = 〈v〉(t,Xt)dt+ V ′t dt, X0

dV ′t = − 1

TL
V ′t dt+

√
C0εdWt, V ′0

(I.11)

Consider the over-damped Langevin model

dYt = 〈v〉(t, Yt)dt+
√
C0εTLdWt, X0 (I.12)

V ′t = exp(− t

TL
)
(
V ′0 +

∫ t

0

√
C0ε exp(s/TL)dWs

)
Xt = X0 +

∫ t

0

〈v〉(s,Xs)ds+

∫ t

0

exp(− s

TL
)
(
V ′0 +

∫ s

0

√
C0ε exp(θ/TL)dWθ

)
ds
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Chapter I. Introduction & motivation: fluid mechanics and stochastic processes

For convenience, assume some uniform Lipschitz regularity (also uniform in time) on the mean
field x 7→ 〈v〉(t, x): there exists a constant L > 0, for all y, y, for all t ≥ 0,

‖〈v〉(t, x)− 〈v〉(t, y)‖ ≤ L〈v〉‖x− y‖.

This is requiring some regularity from the solution of the Reynolds Navier Stokes equation. It
a little bit strong requirement, but such hypotheses can obviously be weakened to only local
regularity.

Considering Lp(Ω) the space of random variables X such that E[|X|]p < +∞, we denote
‖X‖Lp(Ω) = ‖X‖p = (E[|X|p]) 1

P . Based on simple computations, the following lemma give a
first idea of the expected damping convergence.

Lemma I.3.3. Assume 〈v〉 Lipschitz uniformly in TL, with Lipschitz constant L〈v〉. Then, for any
β ≥ 1, for any p > 1,∥∥∥∥∥ sup

s∈[0,t]

|Xs − Ys|

∥∥∥∥∥
2p

≤ TL
(
‖V ′0‖2p + C(p)

√
C0εTL

)
exp(L〈v〉t). (I.13)

This non-asymptotic bound quantifies the approximation of the dynamics (Xt, Vt) by the Brow-
nian one Yt. The approximation is of first order in TL as soon as εTL is bounded.

Proof. Let’s consider the difference

Xt − Yt =

∫ t

0

(
〈v〉(s,Xs)− 〈v〉(s, Ys)

)
ds

+

∫ t

0

exp(− s

TL
)
(
V ′0 +

∫ s

0

√
C0ε exp(θ/TL)dWθ

)
ds+

√
TL
√
C0εWt

From Itô formula applied to (Xt − Yt)2p,

(Xt − Yt)2p =

∫ t

0

(2p)(Xs − Ys)2p−1
(
〈v〉(s,Xs)− 〈v〉(s, Ys)

)
ds

+

∫ t

0

(2p)(Xs − Ys)2p−1 exp(− s

TL
)
(
V ′0 +

∫ s

0

√
C0ε exp(θ/TL)dWθ

)
ds

+
√
TLC0ε

∫ t

0

(2p)(Xs − Ys)2p−1dWs

+
1

2
TLC0ε

∫ t

0

(2p)(2p− 1)(Xs − Ys)2p−2ds
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Chapter I. Introduction & motivation: fluid mechanics and stochastic processes

Taking the sup in both sides, and applying the Lipschitz condition on 〈v〉:

sup
s≤t

(Xs − Ys)2p ≤
∫ t

0

(2p)L〈v〉 sup
θ≤s

(Xθ − Yθ)2pds

+
1

2
C0ε

∫ t

0

(2p)(2p− 1)

(
E[sup

r≤s
|Xr − Yr|2p]

) 2p−2
2p

dr

+

∫ t

0

(2p) sup
r≤s

(Xr − Yr)2p−1
(
|V ′0 | exp(− s

TL
) + sup

r≤s

∫ r

0

√
C0ε exp((θ − s)/TL)dWθ

)
ds

+
√
C0ε
√
TL sup

s≤t

∫ s

0

(2p)(Xr − Yr)2p−1dWr

+
1

2
TLC0ε

∫ t

0

(2p)(2p− 1) sup
r≤s
|Xr − Yr|2p−2dr

We apply now Young inequality4 in the second term:

sup
r≤s

(Xr − Yr)2p−1
(
|V ′0 | exp(− s

TL
) + sup

r≤s

∫ r

0

√
C0ε exp((θ − s)/TL)dWθ

)
≤ 2p− 1

2p
sup
r≤s

(Xr − Yr)2p +
1

2p

(
|V ′0 | exp(− s

TL
) + sup

r≤s

∫ r

0

√
C0ε exp((θ − s)/TL)dWθ

)2p

≤ 2p− 1

2p
sup
r≤s

(Xr − Yr)2p +
22p−1

2p
|V ′0 |2p exp(−2p s

TL
) +

22p−1

2p

(
sup
r≤s

∫ r

0

√
C0ε exp((θ − s)/TL)dWθ

)2p

We take the expectation in the both sides, and in the last term, we apply Jensen inequality

E[sup
s≤t

(Xs − Ys)2p] =

∫ t

0

(2p)
(
L〈v〉 + (2p− 1)

)
E[sup

θ≤s
(Xθ − Yθ)2p]ds

+ E[|V ′0 |2p]
∫ t

0

22p−1 exp(−2p s

TL
)

+ 22p−1E[

∫ t

0

(
sup
r≤s

∫ r

0

√
C0ε exp((θ − s)/TL)dWθ

)2p

]

+
√
TLC0εE[sup

s≤t

∫ s

0

(2p)(Xr − Yr)2p−1dWr]

+
1

2
TLC0ε

∫ t

0

(2p)(2p− 1)

(
E[sup

r≤s
|Xr − Yr|2p

) 2p−2
2p

dr

4If a ≥ 0 and b ≥ 0 are nonnegative real numbers and if p > 1 and q > 1 are conjugate such that 1
p + 1

q = 1m,
then

ab ≤ ap

p
+
bq

q
.
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In the last term: (
E[sup

r≤s
|Xr − Yr|2p

) 2p−2
2p

=
E[supr≤s |Xr − Yr|2p

‖ supr≤s |Xr − Yr|‖2
2p

.

In the second term ∫ t

0

22p−1 exp(−2p s

TL
) = 22p−1TL

2p
(1− exp(−2p t

TL
).

By the Doob’s maximal inequality (see I.C.6),

E

( sup
s∈[0,t]

∣∣∣∣∫ s

0

e−(s−r)/TL dWr

∣∣∣∣
)2p
 ≤ (C(2p))2pE

[(∫ t

0

e−(t−r)/TL dWr

)2p
]

Let’s call Zt =
∫ t

0
e−(t−r)/TL dWr. From Itô formula

E[Zp
t ] = E[

p(p− 1)

2

∫ t

0

e−2(t−r)/TLZp−2
s ds]

≤ E[(sup
s≤t
|Zs|)p−2]

p(p− 1)

2

TL
2

(1− e−2t/TL)

So we obtained that

E[(sup
s≤t
|Zs|)p] ≤ (Cp)

pE[(sup
s≤t
|Zs|)p−2]

p(p− 1)

2

TL
2

(1− e−2t/TL)

Applying Jensen inequality (see I.C.1) in the right-hand side

E[(sup
s≤t
|Zs|)p] ≤ (Cp)

p

(
E[(sup

s≤t
|Zs|)p]

) p−2
p p(p− 1)

2

TL
2

(1− e−2t/TL)

and thus (
E[(sup

s≤t
|Zs|)p]

) 2
p

≤ (Cp)
pp(p− 1)

2

TL
2

(1− e−2t/TL)∥∥∥∥sup
s≤t
|Zs|

∥∥∥∥
2p

≤ C ′p
√
TL.

Putting all together:

E[sup
s≤t

(Xs − Ys)2p] =

∫ t

0

(2p)

(
L〈v〉 + (2p− 1) +

(2p− 1)C0εTL
2‖ supr≤s |Xr − Yr|‖2

2p

)
E[sup

θ≤s
(Xθ − Yθ)2p]ds

+ E[|V ′0 |2p]22p−1TL
2p

(1− exp(−2p t

TL
)

+ 22p−1(
√
C0ε)

2pC ′p
√
TL

+ (2p)
√
TLC0εE[sup

s≤t

∫ s

0

(Xr − Yr)2p−1dWr]
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For the last term, we need to use the Burkholder-Davis-Gundy inequality (see (I.C.7)):

E[sup
s≤t

∫ s

0

(Xr − Yr)2p−1dWr] ≤ CpE[

√∫ s

0

(Xr − Yr)4p−2dr] ≤
√
sCpE[sup

r≤s
(Xr − Yr)2p−1]

So

E[sup
s≤t

(Xs − Ys)2p]

=

∫ t

0

(2p)

(
L〈v〉 + (2p− 1) +

(2p− 1)C0εTL
2‖ supr≤s |Xr − Yr|‖2

2p

+
√
sCp

(2p)
√
TLC0ε

‖ supr≤s |Xr − Yr|‖2p

)
× E[sup

θ≤s
(Xθ − Yθ)2p]ds

+ E[|V ′0 |2p]22p−1TL
2p

(1− exp(−2p t

TL
)

+ 22p−1(
√
C0ε)

2pC ′p
√
TL.

We notice that s 7→ ‖ supr≤s |Xr − Yr|‖2p is increasing in time from 0. Thus, there is a deter-
ministic time s0 such that ‖ supr≤s |Xr−Yr|‖2p >

√
TL, for s ≥ s0. From that s0 to T , we apply

the Gronwall’s inequality to end the proof.5

Exercise I.1. Assume that the mean velocity field (t, x) 7→ 〈v〉(t, x) is conserved along the
Lagrangian trajectories d

dt
〈v〉(t,Xt) = 0. Show then that equation (I.11) is equivalent to

dXt = Vt dt, X0

dVt =
1

TL
(〈v〉(t,Xt)− Vt) dt+

√
C0εdWt, V0

with law(X0, V0) = µ

(I.14)

5

Lemma I.3.4. Gronwall inequality. Let t 7→ g(t) a continuous function on [0, T ] with T arbitrary. Let us
assume that

0 ≤ g(t) ≤ α(t) + β

∫ t

0

g(s)ds

with β ≥ 0 and t 7→ α(t) in L1(0, T ). Then for all t ∈ [0, T ]

g(t) ≤ α(t) + β

∫ t

0

α(s) exp((t− s)β)ds.

When α( · ) ∈ C1
b ([0, T ]), we also have

g(t) ≤ α(0) exp(βt) +

∫ t

0

α′(s) exp((t− s)β)ds.
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Not just jargon. Analysis/modelling tools borrow a lot to signal theory. Autocorrelation
function explores the process behaviour in time, while its power spectral density (PSD) explores
the process in term of frequency.

Sξ(ω) =

∫ +∞

−∞
〈ξτξ0〉 exp(−i2πωτ) dτ

A white noise is a random stationary process (ξt) such that

〈ξtξs〉 = Dδ|t−s|

In particular, its spectral density is constant

Sξ(ω) = 2

∫ +∞

0

〈ξτξ0〉 exp(−i2πωτ) dτ = 2D

A coloured noise is a random stationary process (ξt) such that

〈ξtξs〉 =
D

T
exp(−|t− s|/T )

with noise correlation time T , and with PSD

Sξ(ω) =
2D

T 2ω2 + 1
.

In particular coloured noise tends to white when T tends to zero.
We just manipulate the OU process

ξt = N
(
ξ0 exp(− t

TL
),

∫ t

0

σ2

T 2
L

exp(2(t− s)/TL)ds =
1

2

σ2

TL
(1− exp(−2

t

TL
)

)
.

with ξ0 ' N (0, 1
2
σ2

TL
).

We just proved in the above lemma that the primitive
∫ t

0
ξsds converges strongly to σWt. From

this one can say that a Gaussian white noise process can be constructed as the time ”deriva-
tive” of Brownian motion. However, from the mathematical point of view, it does not exist in
the usual sense since with the probability one the trajectories of Brownian motion are nowhere
differentiable.

A generalized notion of derivative have to be introduced, together with notion of generalized
random process, in a way the fractional Brownian motion is defined (see e.g. the short notes
[Zinde-Walsh and Phillips, 2003]).

A mathematical construction of white noise was given firstly by N. Wiener (1924).
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Chapter I. Introduction & motivation: fluid mechanics and stochastic processes

Itô integrals versus Stratonovich integrals. Let’s go around the nature of the noise enter-
ing the fluctuation models. From the point of view of the Navier Stokes equations, the time
irregularity of the noise is not ”necessary” in the discussion.

As we saw with the convergence of coloured noise to white noise, in such model discussion,
one could quite easily work with a time regularised noise, such as any smoothing of the Brownian
motion having a time continuous derivative (W ε

t ) such that for almost all ω ∈ Ω,

W ε
t −→ Wt, in [0, T ] almost surely as ε goes to zero.

Then with classical Lipschitz conditions on real valued coefficients x 7→ b(x), x 7→ σ(x), and
x 7→ σ′(x), the process (Xε

t , t ∈ [0, T ]) solution of

dXε
t

dt
= b(Xε

t ) + σ(Xε
t )
dW ε

t

dt

converges to (Xt, t ∈ [0, T ]) almost surely as ε goes to zero, where

dXt = b(Xt)dt+
1

2
σ(Xt)σ

′(Xt)dt+ σ(Xε
t )dWt

This is detailed in the famous theorem on the convergence of ordinary integrals to stochastic
integrals first proved by [Wong and Zakai, 1965].

Another way of putting it is to say that (Xε
t , t ∈ [0, T ]) converges to (Xt, t ∈ [0, T ]) almost

surely as ε goes to zero, where

dXt = b(Xt)dt+ σ(Xε
t ) ◦ dWt

where
∫ t

0
σ(Xε

s )◦dWs (also denoted
∫ t

0
σ(Xε

s )∂Ws) is the Stratonovich integral (or Fisk-Stratonovich
integral).

Stratonovich integral
∫ T

0
Φt ◦ dWt is a random variable, defined as a limit in mean square of

k−1∑
i=0

Φti+1
+ Φti

2

(
Wti+1

−Wti

)
as the partition 0 = t0 < t1 < · · · < tk = T of [0, T ] tends to 0 (in the style of a Riemann–
Stieltjes integral).

Two important remarks on Stratonovich integral :

Remark I.3.5.

* Stratonovich integral does not inherit of Brownian motion properties. In particular this inte-
gral loses the martingale property of the ito integral.

* On the other hand, the Stratonovich integral preserves the chain rule : for

Yt = f(Xt)

with f smooth enough
dYt = f ′(Xt) ◦ dXt.
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Chapter I. Introduction & motivation: fluid mechanics and stochastic processes

In the previous discussion, the introduction of a noise model of a Brownian nature is therefore
more natural with the Stratonovich integral, than with the Itô integral.

The hypothesis of a homogeneous isotropic turbulence (ε spatially homogeneous) allows to
pass from one notion of integral to the other without worrying about the correction term, but this
is no longer the case when the considered turbulence is less homogeneous (for example because
of the presence of a wall boundary).

I.3.1.2 Model for turbulent closure : Macroscale view point and PDF approach, Fokker
Planck equation

Fokker-Planck equation The Fokker–Planck (FK) equation is a partial differential equation
that describes the time evolution of the probability density function of a Markovian process that
possesses an infinitesimal operator.

FK equation is also called the Komogorov forward PDE, while the Kolmogorov backward PDE
is related the Feymann Kac formula. These two connexion of Markov processes theory to PDE
theory are very usefull tools for both analysis and numerical analysis.

On a probability space (Ω,F , (Ft, t ≥ 0),P) endowed with a Ft-adapted Brownian motion W ,
of dimension r (which we will always assume r ≤ d even if that means that we increase the state
variables) and with a r.v X0 F0-measurable, of law P0, we consider the SDEXt = X0 +

∫ t

0

σ(t,Xs)dWs +

∫ t

0

b(t,Xs)ds, 0 ≤ t ≤ T,

Pt = P ◦X−1
t .

(I.15)

Definition I.3.6. – Weak solution. Let b(t, x) : R+ × Rd → Rd and σ : R+ × Rd →
L(Rr;Rd) measurable. A weak solution to the SDE

Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs, 0 ≤ t ≤ T (I.16)

is a triplet composed of

1) a filtered probability space (Ω,F ,P , (Ft)) with a filtration (Ft) satisfying the usual con-
ditionsa

2) a (Ft)− Brownian motion valued in Rr.

3) a process (Xt, t ≥ 0), (Ft)− adapted, continuous, valued in Rd, such that∫ T

0

(
|b|+ |σσt|2

)
(s,Xs)ds < +∞, P p.s.

and such that (I.16) is satisfied P-p.s.

aF0 3 N − the set of negliables of F , and for all t ≥ 0, Ft =
⋂
ε>0 Ft+ε.
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The martingale problem due to Stroock and Varadhan [Stroock and Varadhan, 1969] provides
another way to define a solution of a stochastic differential equation. We denote by CT the space
C([0, T ];Rd).

Let (Lt, t ≥ 0) the infinitesimal generator associated to the SDE (I.16) with coefficients
(b(t, · ), σ(t, · )):

Ltφ(x) =
1

2

d∑
i,j=1

(σσt)ij(t, x)
∂2φ

∂xi∂xj
(x) +

d∑
i=1

bi(t, x)
∂φ

∂xi
(x).

Definition I.3.7. – Martingale Problem. The probability measure Q ∈M1(CT ) is solution
of the martingale problem ((Lt, )µ) if

(i) Q0 = µ.

(ii) For all f ∈ C2
b (Rd), the Rd-valued process (Mt), defined by (x( · ) being the canonical

variable inM1(CT ))

Mf
t = f(x(t))− f(x(0))−

∫ t

0

(Lθf) (x(θ))dθ

is a Q-martingale.

The process (Mf
t , t ≥ 0), defined above is a Q-martingale if

EQ
[
Mf

t −Mf
s

∣∣∣ (x(θ), 0 ≤ θ ≤ s)
]

= 0, ∀0 ≤ s ≤ t,

or equivalently, if for all g ∈ Cb(Rn) and for all 0 ≤ t1 < . . . < tn < s,

EQ
[
(Mf

t −Mf
s )g(x(t1), . . . x(tn))

]
= 0.

From a solution of the MP, we can go back to a solution to the Equation (I.16) in the follow-
ing manner. To simplify the discussion we assume that the diffusion coefficient is a constant
σ(t, x) ≡ σ. Applying (ii) for f(x) = x, we call (σWt, t ≥ 0) the resulting martingale, with

Wt :=
1

σ

(
x(t)− x(0)−

∫ t

0

b(s, x(s))ds

)

and dWt =
1

σ
(dx(t)− b(t, x(t))dt)

Applying (ii) again for f(x) = x2, we call (Mx2

t )t≥0 the resulting martingale.

Mx2

t = x2(t)− x2(0)−
∫ t

0

2x(s)b(s, x(s))ds− σ2t.
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But∫ t

0

2x(s)b(s, x(s))ds = 2x(0)(

∫ t

0

b(s, x(s))ds) + 2

∫ t

0

(∫ s

0

b(r, x(r)dr

)
b(s, x(s)ds+

∫ t

0

σWsb(s, x(s))ds

= 2x(0)(

∫ t

0

b(s, x(s))ds) + (

∫ t

0

b(s, x(s))ds)2

+ 2σWt(

∫ t

0

b(s, x(s))ds)− 2

∫ t

0

(

∫ s

0

b(r, x(r))dr)dWs.

Developing x2(t) in the definition ofMx2

t and subtracting the above line. we get

Mx2

t = σ2W 2
t + 2σx(0)Wt + 2

∫ t

0

(

∫ s

0

b(r, x(r)dr)dWs − σ2t.

An so

(W 2
t − t) =

1

σ2

(
Mx2

t − 2σx(0)Wt − 2

∫ t

0

(∫ s

0

b(θ, x(θ))dθ

)
dWs

)
.

As the stochastic integral (
∫ t

0

(∫ s
0
B(θ,Xθ)dθ

)
dWs, t ≥ 0) is a (local) martingale. This last

equality identifies W as a Brownian motion, according to the Lévy martingale characterization
of Brownian motion (see Theorem I.C.8). Moreover, taking the expectation in (ii), we get

Ef(Xt) = Ef(X0) +

∫ t

0

E
[

1

2
σ2f ′′(Xs) +B(s,Xs)f

′(Xs)

]
ds. (I.17)

Weak solution of SDE and solution to martingale problem are two equivalent notions

Indeed, the law on CT of a weak solution to the SDE (I.16) provides immediately a solution
Q = P ◦ X−1 to the martingale problem (L, µ), but this requires some assumption on the data
(b, σ) and an adapted set of test functions for f that allow to qualify the apriori local martingale
Mf as a martingale under the law of the process X . If (b, σ) are unbounded, we can reduce the
set of test functions to C2

c (Rd) rather than C2
b (Rd).

Conversely, if Q is a solution to the martingale problem, the space CT , measured by Q give a
probability space, the Lévy characterisation allows to identify a Brownian motion on that space
such that the canonical process x( · ) satisfies (I.16) Q p.s. (see e.g. [Karatzas and Shreve, 1988]
for more details on weak solution for SDEs.

Theorem I.3.8. – Weak existence of to SDE (I.16), via martingale problem
[Stroock and Varadhan, 1969, Stroock and Varadhan, 1979]. Assume (b, σ) bounded and
continuous on R+×Rd, and µ a probability measure on Rd admitting at least a finite moment
of order γ > 0. Then there exists a solution to the martingale problem (L, µ).
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Remark I.3.9. In Theorem I.3.8, one can replace the assumption (b, σ) bounded by (b, σ)
increasing at most linearly. This requires from µ to have at least a moment of order 2m with
m ≥ 1. Indeed, it is then possible to recover some tightness on the time marginal laws of the
process X , showing

E|Xt −Xs|2m ≤ C(1 + E‖X0‖2m)(t− s)m,

But the 2m-order moment control of the ‖Xt‖ require the control of its initial condition.

I.3.1.3 About uniqueness result for martingale problem

1. The uniqueness of the solution to the MP for (L, µ) is equivalent to the uniqueness of the
weak solution of (I.16).

2. Uniqueness from the regularity of the backward Kolmogorov PDE.

Following [Stroock and Varadhan, 1969, Stroock and Varadhan, 1979].

Consider the MP associated to (L, δy), with solution P y. For all f ∈ Cb(Rd), for t ≤ T ,
consider the Kolmogorov PDE{

∂suf + Lsuf = 0, 0 ≤ s < t
uf (t, x) = f(x)

(I.18)

Assume that the Cauchy problem (I.18) possesses a solution inC([0,+∞)×Rd)∩C1,2((0,+∞)×
Rd), bounded on [0, T ]× Rd, for arbitrary T < +∞. Then, for all t ∈ [0, T ],

uf (0, y) = EP yf(x(t))

with x(t) satisfying (I.16) under P y.

Now, consider two solutions P y et Qy of the MP (L, δy). With the Itô formula,

EP yf(x(t)) = uf (0, y) = EQyf(x(t).

f being chosen in a set of determinant functions for measures of Rd, we can conclude on
the equality of the time-marginales P y

t = Qy
t , for all 0 ≤ t ≤ T , and by extension to all

t ≥ 0.

To get P x = Qx, the previous reasoning must be extended to any finite dimensional distri-
bution. This is done by induction on the n times to consider (see the details in the proof of
Proposition 4.27 (Chapter 6) of [Karatzas and Shreve, 1988]).

The existence of a smooth solution to the Kolmogorov PDE requires some assumption on
(b, σ). For example, b, σ Hölder and a = σσt strongly elliptic are classical assumptions,
but other set of hypotheses are possible.
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3. Uniqueness from the drift removing argument.

If b is bounded measurable, if a = σσt is continuous in x, uniformly in time, and strongly
elliptic uniformly in time, then the martingale problem is well posed

This result from [Stroock and Varadhan, 1979] uses such argument.

For simplicity, assume r = d = 1. If (b, σ) are measurable, and b bounded, σ−1 bounded
and σ uniformly Lipschitz in x, well-posedness can be deduce form a Girsanov argument.

Indeed, assumption on σ allow to consider the unique strong solution on a given probability
space (Ω,P,W ), of the SDE

dYt = σ(t, Yt)dWt.

Moreover,

Zt = exp

(
−
∫ t

0

(σ−1b)(s, Ys)dWs −
1

2

∫ t

0

(σ−1b)2(s, Ys)ds

)
is an exponential martingale. So under Q = ZTP restricted to the sigma-algebra FT
generated from W ,

Bt = Wt −
∫ t

0

(σ−1b)(s, Ys)ds

is a Q - Brownian motion (Girsanov Theorem (see e.g [Karatzas and Shreve, 1988], and
so Q is solution to MP.

4. Uniqueness from the FK equation.

Assume the existence of a solution to (I.16), Consider the time marginal Pt = P ◦X−t 1.

For all φ ∈ C2
c (Rd), we define the integration bracket:

〈Pt, φ〉 =

∫
Rd
φ(x)Pt(dx) = E[φ(Xt)].

Then from the Itô formula,

d

dt
〈Pt, φ〉 = 〈Pt,Ltφ〉. (I.19)

With two integrations by part, for all φ, ψ ∈ C∞c (Rd),

〈ψ,Ltφ〉 = 〈L∗t , φ〉

with

L∗tψ(x) =
1

2

d∑
i,j=1

∂2

∂xi∂xj

(
(σσt)ij(t, x)ψ(x)

)
−

d∑
i=1

∂

∂xi
(bi(t, x)ψ(x)) .
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This means that the set of time -marginal (Pt) is solution, in the sense of distributions, to
the Fokker Planck PDE {

∂Pt
∂t

= L∗tPt, on [0, T ]× Rd

P0 = µ given.

Any set of hypotheses from PDE theory that grants the uniqueness of the FP PDE allows
to conclude on the uniqueness for the MP.

Exercise I.2.
1). Write the Fokker-Planck PDE for the time-marginal laws of (Xt, Vt) and (Yt) solution of
(I.14) and (I.12).

2). Let (x̃t, ũt)t≥0 and (Ỹt)t≥0 be the solutions to the equations (I.14) and (I.12) in the case
where 〈v〉(t, x) ≡ 0.
We define ΓOU : R+ × R2 × R2 7→ R as the transition density of (x̃t, ũt)t≥0 meaning that
ΓOU(t; y, v;x, u) = Py,v ((x̃t, ũt) ∈ (dx, du)) /dxdu and ΓB : R+ × R × R 7→ R as the tran-

sition density of (Ỹt)t≥0 such that ΓB(t; y;x) =
1√

2πσ2t
exp

(
− 1

2σ2t
(x− y)2

)
.

3). Write the Fokker-Planck PDEs for (t, x, u) 7→ ΓOU(t; y, v;x, u) and (t, x) 7→ ΓB(t; y;x).

4). Show that the mild equation

ρ(t, x, u) =

∫
R2

ΓOU(t, y, v;x, u)µ(dy, dv) (I.20)

+

∫ t

0

∫
R2

∂

∂v
ΓOU(t− s, y, v;x, u)

1

TL
〈v〉(s, y)ρ(s, y, v)dydv ds (I.21)

is solution to the Fokker Planck PDE associates to SDE (I.14).

5). Write the mild equation for p(t, x) the density solution of the Fokker-Planck equation for
SDE (I.12).

Stochastic Lagrangian approach. We come back to the computational fluid dynamics (CFD)
view point that deals with the numerical computation of the RANS momentum equation

∂t〈v〉(t, x) + 〈v〉 ·∇〈v〉+
∑
j

∂xj
〈
v′ v′j

〉
+

1

ρ0

∇〈p〉(t, x) =
1

Re
∆〈v〉(t, x), (t, x) ∈ (0, T ]×D,

∇ · 〈v〉(t, x) = 0, (t, x) ∈ [0, T ]×D
〈v〉(0, x) = v̄0(x), x ∈ D.

together with a given parametrisation for the Reynolds tensor Rij =
〈
v′iv
′
j

〉
; a turbulent closure.

We assume that the Reynolds number is very large so we can neglect 1
Re∆〈v〉 in front of all the
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other terms

∂t〈v〉(t, x) + 〈v〉 ·∇〈v〉+
∑
j

∂xj
〈
v′ v′j

〉
+

1

ρ0

∇〈p〉(t, x) = 0, (t, x) ∈ (0, T ]×D,

∇ · 〈v〉(t, x) = 0, (t, x) ∈ [0, T ]×D
〈v〉(0, x) = v̄0(x), x ∈ D.

Eulerian approaches numerically solve RANS + closure with a dedicated method. They are
differentiated by the definition that is implemented from the average operator, with some conse-
quence on the modelling accuracy of the solver.

For example RANS method defines 〈 · 〉 as time-averaging operator, while Large Eddy simula-
tion (LES) use a convolution filter to define 〈 · 〉 with a kernel defined to cut some small scales.
Differences are in the closure equations, a some hierarchy exists (as shown in Figure I.3.1.3). By
contrast to the fully-resolved direct simulation, models that support CFD methods are referred as
sub-grid models.

Figure I.6: A schematic hierarchy of numerical approaches for turbulent flows.

PDF approaches / Stochastic Lagrangian approaches. PDF stands for Probability density
function. PDF or Stochastic Lagrangian approaches are probabilistic model and numerical ap-
proaches based on the reintroduction, at a larger scale, of a probabilistic meaning of the average
〈 · 〉.

In CFD, turbulence modelling gives access mainly to the averaged Eulerian velocity and other
second moments according to the model. Stochastic Lagrangian approach focus on describing
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the dynamics of a fluid-particle -or virtual fluid parcel- and its characteristic position and instan-
taneous velocity

(Xt, Ut),

dynamics characterized by a SDE, which suitably approximate the motion of(
X+(t) = X0 +

∫ t

0

v(t,X+(s)ds, v(t,X+(t))

)
.

This SDE is constructed on the basis of a Fokker Planck equation for the density function relative
to the position and the velocity of the fluid particle. This joint probability density of the process
((Xt, Ut); 0 ≤ t ≤ T ), denoted below by %, allows to interpret the Reynolds operator 〈 · 〉, the
expectation symbol E being notably associated to the probability measure P, under which the
Brownian motion (Bt) driving the SDE is defined.

Eulerian PDF approach Let ρEuler(t, x;V ) be the probability density function of the (Eulerian)
random field v(t, x, ω), then 〈

v(i)
〉
(t, x) =

∫
R3

uiρEuler(t, x;u)du,〈
v(i)v(j)

〉
(t, x) =

∫
R3

uiuiρEuler(t, x;u)du.

The closure problem is reported on the PDE satisfied by the probability density function ρEuler.
This is the so-called PDF method.

In his seminal work, [Pope, 1994b] proposes to model the PDF ρEuler with the Lagrangian prob-
ability density function, or equivalently with a Lagrangian description of the flow.

Let ρLagrangian(t;x, v) be the probability density function of fluid-particle with state (Xt, Vt). In
the case of incompressible flow, with constant mass of particles the relationship between ρE and
ρL is

ρEuler(t, x; v)dv =
ρLagrangian(t;x, v)∫

R3 ρLagrangian(t;x, u)du
dv

For any random variable g(Vt), with finite moment,

〈g(v(t, x))〉 =

∫
R3

g(v)ρEuler(t, x; v)dv= E
[
g(Vt)

∣∣Xt = x
]

We then redefine the 〈 〉 with the Lagrangian density:

〈g(v(t, x))〉 =

∫
R3 g(v)ρLagrangian(t, x, v) dv∫

R3 ρ(t, x, v) dv
=

1

ρ(t, x)

∫
R3

g(v)ρLagrangian(t, x, v) dv (I.22)

where we set
ρ(t, x) =

∫
R3

ρLagrangian(t, x, v) dv
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.
A reference stochastic Lagrangian model is the Generalized Langevin Model (GLM),

dX
(i)
t = U

(i)
t dt, 1 ≤ i ≤ 3,

dU
(i)
t = −1

ρ

∂〈p〉
∂xi

(t,Xt)dt

+
3∑
j=1

Gij(t,Xt)(U
(j)
t −

〈
vj
〉
(t,Xt))dt+

√
C0(t,Xt)ε(t,Xt)dB

(i)
t ,

(Bt = (B
(i)
t ), t ≥ 0) is a standard 3D-Brownian motion,

(I.23)

Let’s write the FK equation associated to this generic GLM: P ((Xt, Vt) ∈ dxdv) := ρLagr.(t;x, v)dxdv.

∂tρLagr. + (v ·∇xρLagr.) =
1

ρ
(∇x〈p〉(t, x) ·∇vρLagr.)

−∇v · (G(t, x)(〈v〉(t, x)− v)ρLagr.) +
1

2
C0(t, x)ε(t, x)4vρLagr.

The SDE (I.23) is designed to be consistent with the Navier-Stokes equations through formal
developments on the Fokker-Planck equation above.

∂t

∫
R3×R

g(v)ρLagr.(t, x, v) dv +

(
∇x ·

∫
R3

(v · g(v)ρLagr.(t, x, v)) dv

)
= Gij(t, x)

∫
R3

∂vig(v)
(
vj −

〈
v(j)
〉
(t, x)

)
ρLagr.(t, x, v)dv

+
1

2
C0(t, x)ε(t, x)

∫
R3

4vg(v)ρLagr.(t, x, v) dv.

(I.24)

With g(v) = 1, integrating w.r.t. dv gives the equation for the conservation of mass,

ρ(t, x) =

∫
ρLagr.(t;x, v)dv

∂t

∫
ρLagr.dv +∇x ·

(∫
vρLagr.dv∫
ρLagr.dv

∫
ρLagr.dv

)
= 0⇐⇒ ∂tρ+∇x · (ρ〈v〉) = 0.

With g(v) = vi, integrating w.r.t. vdv gives the RANS momentum equation.

∂t
〈
v(i)
〉
(t, x) +

(
∇x ·

〈
v(i)v

〉
(t, x)

)
= −1

ρ
∂xi〈p〉(t, x). (I.25)

With g(v) = vivj we recover the Reynolds stress model equation, according to the choice C0

and G.
The SDE (I.23) is of McKean Vlasov type.
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I.3.2 Particle-laden flows

I.3.2.1 Particle dynamics

• About the flow the phase :

The Kolmogorov length scale ηK represents the smallest length scale for fluid motions in
a turbulent flow. For most of industrial or environmental flows, ηK ∈ [50µm, 1mm].

The governing equations for the fluid are the Navier-Stokes equations, complemented by
transport equations for a set of scalar fields (temperature,...) when needed.

The flow field Uf (t, x) is computed :
• below the scale ηK (Direct Numerical Simulation). From very expensive to totally
prohibitive computation time.

• above the scale ηK (Engineering application, CFD). Required turbulence modelling: only
mean and second order moments velocity are computed Uf (t, x) = 〈Uf〉(t, x) + noise.

• About the inclusion phase :

• Small (spherical) particles, with diameters dp � ηK(∼ 30µm) so that point-wise ap-
proximation is reasonable : description is given by Lagrangian equation on center of mass
position and velocity (xp(t), Up(t)).
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The Lagrangian equation obtained by applying the fundamental laws of classical mechan-
ics for each particle carried by the flow (Hydrodynamical approach) :

Hydrodynamical forces on particles :

dxp
dt

= Up(t), mp
dUp
dt

=Ff 7→p + Fp 7→p + Fext,

(
dΩp

dt
= Mf 7→p +Mp 7→p

)
translational and rotational velocity for non spherical part.

For particles heavier than the fluid (inertial particle: ρp � ρf , corresponding to typical
size dp ≥ 5− 10µm) the drag force exerted by the fluid Ff 7→p is dominant:

dUp
dt

=
(Us − Up)

τp
+ g, τp =

ρp
ρf

4dp
3CD|Us − Up|

, τp(dp)↗

The particle relaxation timescale τp measures the particle inertia, as the timescale over
which particle velocities adjust to the local fluid velocity seen Us(t).

Fext: gravity g can be neglected in front of drag force.

Interaction between particles Fp 7→p are collision events, and produces agglomerations, frag-
mentations...

A complete picture of all of the hydrodynamical approach can be found in the following
review [Minier, 2016].

The particle state vector is now (xp(t), Up(t), Us(t))
The velocity seen: Us(t) = Uf (t, xp(t)).

I.3.2.2 Statistical descriptions of single-phase turbulence

Modelling the fluid velocity seen by a particle:

Uf (t, x) = 〈Uf〉(t, x) + noise(t, x)

Modelling coherency requires to adopt Lagrangian point of view also for the fluid :

〈Uf〉(t, x) = 〈Uf (t)|xf (t) = x)〉

with a General Langevin Model: dxf (t) = Uf (t)dt,

dU
(i)
f (t) = −∂xi〈p〉(t, xf (t))dt+

(
Gij

(
U

(j)
f −

〈
U

(j)
f

〉))
(t, xf (t))dt+ σi,j(t, xf (t))dB

(i)
t

B is a 3D-Brownian motion.

Gij = −CR
2

ε

tke
δij+C2

∂
〈
U (i)

〉
∂xj

, σi,j =
2

3
(CRε+C2P − ε) δij,
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Figure I.7: top : Borrowed from ROCKY Blog : Turbulent dispersion model: discover how to
account for the turbulence effect on particle trajectories.

• Mean field approximation for the fluid particle leads to a complex McKean Vlasov SDE,
where 〈 · 〉(t, x) = E[ · |xf (t) = x].

u′(t) being the centred Lagrangian velocity Uf (t)− 〈Uf〉(t, xp(t).

P = 1
2
Pii, the turbulent production term Pij := −(〈u′iu′k〉∂xk

〈
U (i)

〉
−
〈
u′ju

′
k

〉
∂xk
〈
U (j)

〉
ε is closed with coherent parametrisation involving tke = 1

2
〈u′iu′i〉.

I.3.2.3 Langevin model for dispersed particles embedded in a turbulent flows using a dy-
namic PDF model

• Inertial particle (ρp � ρf ) :

dxp(t) = Up(t)dt,

dUp(t) = 1
τp

(Us(t)− Up(t))dt

dU i
s(t) = − 1

ρf
∂xi〈p〉(t, xp(t))dt

+ (
〈
U j
p

〉
−
〈
U j
f

〉
)∂xi

〈
U j
f

〉
dt+G∗ij(U

j
s −

〈
U j
f

〉
(t, xp(t))dt+ σij(t, xp(t))dBj

G∗ij = TL
T ∗L
Gij where TL

T ∗L
is a model factor. T ∗L is correlation timescale of the velocity of the

fluid seen / TL is the Lagrangian correlation timescale of the velocity.
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• Highly inertial particle limit : overdamped dynamics

When T ∗L → 0, and finite τp (high inertia), G∗ij ∼ 1
T ∗L

,

dxp(t) = Up(t)dt,

dU i
p(t) = 1

τp
(
〈
U i
f

〉
(t, xp(t))− U i

p(t))dt

+ 1
τp
G−1
ij

1
ρf
∂xj〈p〉(t, xp(t))dt+ 1

τp
(G∗−1(σ))ij(t, xp(t))dBj

• Small-enough particles (colloids, ρp � ρf , dp ≤ 1 − 2µm). Drag force is complemented
with molecular effects and Brownian motion:

dxp(t) = Up(t)dt,

dUp(t) = 1
τp

(Us(t)− Up(t))dt+KBrow(τp)dW (t)

dU i
s(t) = − 1

ρf
∂xi〈p〉(t, xp(t))dt

+ (
〈
U j
p

〉
−
〈
U j
f

〉
)∂xi

〈
U j
f

〉
dt+G∗ij(U

j
s −

〈
U j
f

〉
(t, xp(t))dt+ σij(t, xp(t))dBj

with KBrow increasing with 1/(τp)
1
2 . B and W are assumed independent.

• Generalized Langevin to Einstein limit τp → 0 overdamped dynamics

dxp(t) = Us(t)dt+ τpKBrow(τp)dW (t)

dU i
s(t) = − 1

ρf
∂xi〈p〉(t, xp(t))dt

+G∗ij(U
j
s −

〈
U j
f

〉
(t, xp(t))dt+ σij(t, xp(t))dBj
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Appendix

I.A Material derivative

In continuum mechanics, the material derivative describes the time rate of change of some
physical quantity (like heat or momentum) of a material element that is subjected to a space-and-
time-dependent macroscopic velocity field.

The material derivative is defined for any tensor field y that depends only on position and time
coordinates, y = y(x, t):

Dy

Dt
≡ ∂y

∂t
+ v ·∇y, (I.26)

where ∇y is the covariant derivative of the tensor. Generally the convective derivative of the
field v ·∇y, the one that contains the covariant derivative of the field, can be interpreted both as
involving the streamline tensor derivative of the field v(∇y), or as involving the streamline direc-
tional derivative of the field (v∇)y, leading to the same result. Only this spatial term, containing
the flow velocity, describes the transport of the field in the flow, while the other describes the
intrinsic variation of the field, independent of the presence of any flow. Confusingly, sometimes
the name ”convective derivative” is used for the whole material derivative D/Dt, instead for only
the spatial term v ·∇ The effect of the time-independent terms in the definitions are for the scalar
and tensor case respectively known as advection and convection.

I.B The normal to a 3D surface and Divergence Theorem

Given a three-dimensional surface defined implicitly by

S = {(x, y, z); F (x, y, z) = 0},

where F is piecewise-C1 function, then the outward unit normal is defined as

n =
∇F
‖∇F‖

.
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If the 3D-surface is defined parametrically in the form

S = {(φ, ψ) 7→ (x(φ, ψ), y(φ, ψ), z(φ, ψ)), }

define the vectors

a = (∂φx, ∂φy, ∂φz)

b = (∂ψx, ∂ψy, ∂ψz).

Then the unit normal vector is
n =

a× b
‖a× b‖

,

where × stands for the cross product or vector product 6.

Theorem I.B.1 (Ostrograsky Divergence Theorem (fluid mechanics) / Gauss Theorem (elec-
tromagnetism)).
Let D a compact domain in de Rd, with a piecewise smooth boundary ∂D. The closed manifold
∂D is oriented by outward-pointing normals, and n( · ) is the outward pointing unit normal
at each point on the boundary. If F is a continuously differentiable vector field defined on a
neighbourhood of D, then ∫

D
(∇ ·F )dv =

∫
∂D

(F ·n)ds (I.27)

I.C Selected reminders of probability theory and stochastic
processes

Theorem I.C.1. Jensen’s inequality. Let φ : R → R be a convex function. Let X be a real r.v.
such that E[|X|] < +∞ and E[|φ(X)|] < +∞. Then

φ(E[X]) ≤ E[φ(X)].

Proof. The proof is based on a property of convex functions: φ can be written as the supremum
of affine functions family, which are all lower than it. In particular, there exists a countable set
of real numbers (an, bn)n∈N such that φ(x) = supn≥1(anx+ bn). Thus,

E[φ(X)] ≥ E[anX + bn] = anE[X] + bn.

This inequality being true for all n, by passing to the sup we obtain that E{φ(X)} ≥ supn(anE(X)+
bn) = φ(E(X)).

6The cross product is defined for the Euclidean space R3. It is an antisymmetric product (A × B = −B × A)
and A×B is defined as

A×B = ‖A‖‖B‖ sin(θAB)

where θAB is the angle formed by the two vectors. The result is orthogonal to the plan containing (A,B) and
oriented according to the right-hand rule.
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Theorem I.C.2.

a) Hölder’s Inequality. Let X and Y , two real valued r.v. such that E[|X|p + |Y |p] < ∞, for
p > 1 and let q the conjugate of p s.t. 1

p
+ 1

q
= 1. Then

E[XY ] ≤ E[|XY |] ≤ E[|X|p]
1
p E[|Y |q]

1
q .

b) Minkowski’s inequality. Let X and Y , two real valued r.v. such that E[|X|p + |Y |p] < ∞,
for 1 < p <∞. Then

E[|X + Y |p]
1
p ≤ E[Xp]

1
p + E[Y p]

1
p .

Proof. The function x 7→ ex is strictly convex, i.e. that for all xα ∈]0, 1[, eαx+(1−α)y ≤ αeu +

(1− α)ev. Then for two r.v U and V such that E(eU + eV ) <∞, taking x = log

(
eU

E(eU)

)
and

y = log

(
eV

E(eV )

)
, we have

(
eU

E(eU)

)α(
eV

E(eV )

)1−α

≤ α
eU

E(eU)
+ (1− α)

eV

E(eV )
.

Thus by taking the expectation of both sides of the above inequality, we obtain

E{eαUe(1−α)V } ≤
(
E(eU)

)α (E(eV )
)(1−α)

. (I.28)

The Hölder inequality results from (I.28), taking U = p log |X|, V = q log |Y | and α = 1
p
.

It is sufficient to write that (X+Y )p = X(X+Y )p−1 +Y (X+Y )p−1, to deduce Minkowski’s
inequality from Hölder’s inequality.

I.C.1 Filtration and adaptation

Definition I.C.3. A filtered probability space (Ω,F , (Ft)t≥0,P) is a probability space (Ω,F ,P)
endowed with a increasing family (for the ensemble inclusion sense) of sub-sigma algebra of F ,
denoted (Ft, t ≥ 0) :

0 ≤ s < t, Fs ⊂ Ft.

I.C.1.1 Example

Let denote (FXt , t ≥ 0) the filtration generated by a given process (Xt, t ≥ 0), defined as
follows: For all t ≥ 0, FXt is the smallest sigma-algebra that makes all the applications ω ∈
Ω→ Xθ(ω) measurable for all θ ≤ t.

FXt := σ(Xθ, 0 ≤ θ ≤ t).
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Usual conditions

All the filtrations in this document are assumed to fulfil the usual conditions: Let

N = {A ∈ F ; P(A) = 0}.

a) If A ∈ N , then for all t ≥ 0, A ∈ Ft.

b) (Ft, t ≥ 0) est right-continuous:

∀t ≥ 0, Ft = Ft+ =
⋂
ε>0

Ft+ε.

The filtration generated by a process (X) does not satisfies naturally the usual conditions. The
filtration is them corrected to get what is called the natural filtration :

FXt = σ

(⋂
ε>0

σ(Xs, s ≤ t+ ε)
⋃
N

)
.

When a filtration (Ft) on (Ω,F ,P) is imposed, one define the Brownian motion adapted to this
filtration:

Definition I.C.4. Let (Ω,F , (Ft)t≥0,P) a filtered probability space. AnFt–Brownian motion (or
Wierner process) (Wt, t ≥ 0) is a real-valued process with continuous trajectories that satisfies

(Wt, t ≥ 0) is (Ft)-adapted.

∀0 ≤ s ≤ t, Wt −Ws is independent of Fs; Wt −Ws has the same law than Wt−s and is a
Gaussian N (0, t− s).

W0 = 0 P p.s.

If (Ft) = (FWt ), then the two definitions I.3.2 and I.C.4 coincide.

I.C.2 Martingales in continuous time

Consider a filtered probabilized space (Ω,F , (Ft),P).

Definition I.C.5. A process (Mt, t ≥ 0) is a Ft–martingale if

(i) (Mt) is a Ft–adapted process.

(ii) E|Mt| < +∞, for all t ≥ 0, (i.e. the process (Mt) is integrable).

(iii) For all s ≤ t, E[Mt/Fs] = Ms.
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• If we replace (iii) by :

(iii’) For any s ≤ t, E(Mt/Fs) ≤Ms, we say that (Mt) is an supermartingale.

• If we replace (iii) by :

(iii”) For any s ≤ t, E(Mt/Fs) ≥Ms, we say that (Mt) is a submartingale.

• If a process (Mt) is a Ft–martingale, then

∀t ≥ 0, E(Mt) = E(M0).

The expectation of a martingale remains constant over time!

• One of the great interests of the martingale property is that it allows to make quantitative
computation on processes and SDEs.

Examples of martingales

The simplest example of a martingale: let X be a real, integrable v.a. real, integrable then, the
process (Mt) defined for all t ≥ 0 by

Mt = E(X/Ft)

is a martingale.
Now let (Wt, t ≥ 0) be a standard Brownian FFt motion.

1. (Wt) is a Ft–martingale.

2. (W 2
t − t, t ≥ 0) is a Ft–martingale.

3. (exp(σWt − σ2

2
t), t ≥ 0) is a Ft–martingale.

I.C.3 Doob’s maximal inequality:

Martingales are objects which play a great role in the theory of stochastic theory of stochastic
processes, in particular because one can apply to them the following maximum inequality:

Theorem I.C.6. (Doob’s inequality). Let (Mt) be a real continuous Ft–martingale (i.e.
with continuous trajectories). Then (|Mt|) is a continuous submartigale. For any p > 1 such
that MT ∈ Lp(Ω) (i.e. E|Mp

T | < +∞), sup0≤t≤T |Mt| is in Lp(Ω) (i.e. E[sup0≤t≤T |Mt|p] <
+∞). (

E
[

sup
0≤t≤T

|Mp
t |
]) 1

p

≤ p

p− 1
{E (|MT |p)}

1
p .
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The constant p
p−1

is not optimal in p. For some specific cases of Brownian martingales/Brownian
integrals, some authors gave sharpen constant (see e.g. [Peškir, 1998]).

However the constant p
p−1

is not so bad. Consider the case where (M) is a standard Brownian
(W ). Then, using the explicit maximum law of Brownian motion:

{
E
(

sup
0≤t≤T

|Wt|
)p} 1

p

=

{
E
(

max

(
sup

0≤t≤T
(Wt),− inf

0≤t≤T
(Wt)

))p} 1
p

≤
{
E
(

sup
0≤t≤T

(Wt)− inf
0≤t≤T

(Wt)

)p} 1
p

triangular inequality for the Lp − norm
≤ 2

{
E
[(

sup
0≤t≤T

(Wt)

)p]} 1
p

maximun law for BM
≤ 2 {E [|WT |p]}

1
p .

For p = 2, we find above the Doob maximal inequality for Brownian motion. For p > 2,
the above calculation, although exploiting a known identity on the maximum law of Brownian
motion, becomes a coarser estimate than the Doob inequality (indeed, 2 > p/(p− 1) as soon as
p > 2).

I.C.4 GBD Inequality for Martingales

Theorem I.C.7 (Burkholder-Davis-Gundy). For any 0 ≤ p <∞, there exist two positive con-
stants cp, Cp such that, for all continuous local martingales X with X0 = 0 and for any stop-
ping time τ , we have the following inequalities

cp E [〈X〉pτ ] ≤ E

[(
sup
t≤τ

Xt

)2p
]
≤ Cp E [〈X〉pτ ] .

I.C.5 Lévy characterisation of Brownian motion

A d-dimensional Brownian motionX = (X1, . . . , Xd) on a filtered probability space (Ω,F , {Ft}t≥0,P)
is a continuous adapted process with X0 = 0 such that, for any t > s ≥ 0, Xt −Xs is indepen-
dent of Fs and multivariate normal with zero mean and covariance matrix (t− s)Id.

Theorem I.C.8. Let X = (X1, . . . , Xd) be a d-dimensional (local) martingale with X0 = 0.
Then, the following are equivalent.

• X is a Brownian motion on the underlying filtered probability space.

• X is continuous and (X i
tX

j
t − δijt) is a (local) martingale for 1 ≤ i, j ≤ d.
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I.C.6 Itô integral

Let (Ω,F , (Ft),P) and W a Ft–BM valued in R. T > 0 finite but arbitrary.
We consider and elementary process in space

EbF(0, T ) = {φ;φt(ω) =
n−1∑
i=0

φi(ω)1]ti,ti+1](t), 0 = t0 < t1 < . . . < tn = T,

the φi being r.v. Fti-mesurables and bounded.}

• We set

I(φ) =
n−1∑
i=0

φi(Wti+1
−Wti)

• For all t ∈ [0, T ], we set

It(φ) =
n−1∑
i=0

φi
(
Wti+1∧t −Wti∧t

)

and we denote it It(φ) =

∫ t

0

φsdWs. For all s ≤ t, It(φ)− Is(φ) =
∫ t
s
φθdWθ.

- By construction, trajectories of (It(φ, t ∈ [0, T ]) are time continuous. (It(φ), t ∈ [0, T ])
is an Ft-adapted process, and the application It : φ → It(φ) is linear in φ on the space
EbF(0, T ).

So it is possible to extend this integral definition to a wider class of integrands as soon as the
extended space admit the elementary space EbF(0, T ) to be dense in it (for a metric that makes
the larger space a Hilbert space7).

For arbitrary fixed T > 0, on define

M2
F(0, T ) =

{
(φt, 0 ≤ t ≤ T ) valued in R, Ft–adaptd; E

(∫ T

0

φ2
θdθ

)
< +∞

}
.

7M2
F (0, T ) is an Hilbert space : meaning that the space has a scalar product, that generate a metric that make the

space a Banach space. here the scalar product is (φ ·ψ) = E
[∫ T

0
φθψθdθ

]
.
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Theorem I.C.9. For φ, ψ in M2
F(0, T ), it exists a continuous and adapted modificationa of

the process (It(φ), t ≤ T ), denoted (
∫ t

0
φθ dWθ, t ≤ T ) such that ∀s ≤ t ≤ T ,

i)
(∫ t

0
φθdWθ, 0 ≤ t ≤ T

)
is a Ft–martingale.

ii) E
[∫ t

s
φθ dWθ

∫ t
s
ψθdWθ

∣∣∣Fs] = E
[∫ t

s
φθψθ dθ

∣∣∣Fs].
Itô isometry

E

[(∫ t

s

φθdWθ

)2
]

= E
(∫ t

s

φ2
θdθ

)
.

iii) If (W 1
t ,W

2
t , t ≥ 0) are two independent Ft- Brownian motions,

EFs
(∫ t

s

φθdW
1
θ

∫ t

s

ψθdW
2
θ

)
= 0.

aA process (Yt, t ≤ 0) is said to be a modification of (Xt, t ≥ 0) if for all t ≥ 0 P(Yt = Xt) = 1.

Vademecum :

Let (Wt) Ft–BM and (φt) Ft–adapted.(∫ t
0
φsdWs

)
is defined as soon as

∫ T
0
φ2
sds < +∞ P p.s., or as soon as E

(∫ T
0
φ2
sds
)
< +∞.(∫ t

0
φsdWs

)
0≤t≤T

is a martingale as soon as E
(∫ T

0
φ2
sds
)
< +∞,

I.C.7 Itô formula

Le (Wt, t ≥ 0) a Ft–BM valued in Rr on (Ω,F , (Ft)t≥0,P).

Definition I.C.10. An Itô process (X) is a continuous and Ft-adapted process such that

Xt = X0 +

∫ t

0

bθdθ +

∫ t

0

σθdWθ P p.s.

dXt = btdt+ σtdWt, X(0) = X0

where

1) X0 is a F0 measurable r.v.

2) (bt)0≤t≤T is a Rd valued process, Ft–adapted and such that
∫ T

0
|bs|ds < +∞ P p.s.

3) (σt)0≤t≤T is a matrix valued process such that ∀t ∈ [0, T ], σt ∈ L(Rr,Rd)

and i = 1, . . . , d, j = 1, . . . , r σi,j is Ft–adapted and
∫ T

0

|σi,js |2ds < +∞ P p.s.).
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If (σi,j ∈ M2
F(0, T )), (Xt) is a martingale if and only if, for almost all t ∈ [0, T ], P − ps,

bit = 0, i = 1, . . . , d.
Let u(t, x) on [0, T ]×Rd, valued in R, in C1,2([0, T ]×Rd) (one continuous derivatice in time,

two in space)

gradient of u

∇u(t, x) =

(
∂u

∂xi
(t, x), 1 ≤ i ≤ d

)
∈ Rd

Hessian of u

uxx(t, x) =

(
∂2u

∂xi∂xj
(t, x), 1 ≤ i, j ≤ d

)
∈ L(Rd,Rd).

Proposition I.C.11. P- almost surely, for all t ∈ [0, T ],

u(t,Xt) =u(0, X0) +

∫ t

0

∂u

∂s
(s,Xs)ds+

∫ t

0

∇u(s,Xs) · dXs

+
1

2

∫ t

0

trace
(
σsσ

t
suxx(s,Xs)

)
ds

=u(0, X0) +

∫ t

0

∂u

∂s
(s,Xs)ds+

∫ t

0

∇u(s,Xs) · dXs

+
1

2

∫ t

0

d∑
i,j=1

∂2u

∂xi∂xj

r∑
k=1

σiks σ
jk
s ds

du(t,Xt) =

(
∂u

∂t
(t,Xt) +∇u(t,Xt) · bt

)
dt+

(
1

2
trace(σtσ

t
tuxx(t,Xt)

)
dt

+∇u(t,Xt) ·σtdWt.

Proposition I.C.12. (Integration by part formula for deterministic integrand. )
f : [0, T ]→ R in C1 and W BM R-valued∫ t

0

f(s)dWs = f(t)Wt −
∫ t

0

f ′(s)Wsds.

Applying Itô formula to f(t)Wt :

f(t)Wt = f(0)0 +

∫ t

0

f ′(s)Wsds+

∫ t

0

f(s)dWs.

Proposition I.C.13. (Stochastic integration by part)). Let W BM R-valued. Consider two Itô
processes valued in R: {

dXt = btdt+ σtdWt,
dYt = βtdt+ γtdWt.
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Then

d(XtYt) = XtdYt + YtdXt + σtγtdt,

or

XtYt = X0Y0 +

∫ t

0

XsdYs +

∫ t

0

YsdXs +

∫ t

0

σsγsds.

Proof. Apply the 2D Itô formula, for u(t, x, y) = xy to the process (Xt, Yt).

I.C.8 Tightness criteria

Definition I.C.14. Let (S, d) be a metric space and let Π be a family of probability measures on
(S,Borel(S)). We say that Π is relatively compact if every sequence of elements of Π contains a
weakly convergent subsequence. We say that Π is tight if for every ε > 0, there exists a compact
set K ⊆ S such that P (K) ≤ 1− ε, for every P ∈ Π.

IfXα, α ∈ A is a family of random variables, each one defined on a probability space (1Ωα,Fα, Pα)
and taking values in S, we say that this family is relatively compact or tight if the family of in-
duced measures {P ◦X−1

α } has the appropriate property.

Theorem I.C.15. (Prohorov (1956)). Let Π be a family of probability measures on a complete,
separable metric space (S, d). This family is relatively compact if and only if it is tight.

The spaces C([0, T ];Rd), T < +∞ and C([0,+∞);Rd)

We provide C([0, T ];Rd) with the topology of uniform convergence.

du(x, y) = ‖x− y‖∞ = sup
t∈[0,T ]

|x(t)− y(t)|.

We provide C([0,+∞);Rd) with the metric of local uniform convergence associated to the
metric dul :

dul =
∑
n∈N

2−n
(

1 ∧ sup
0≤t≤n

|x(t)− y(t)|
)
.

Theorem I.C.16. The space C([0, T ];Rd), provided with the distance du is complete and sep-
arable. Moreover the Borelian sigma-algebra of C([0, T ];Rd) is equal to the sigma-algebra
generated by the coordinates :

B(C([0, T ];Rd)) = σ
(
{x ∈ C([0, T ];Rd), (x(t1), . . . , x(tp)) ∈ A, p ≥ 1, A ∈ B((Rd)p)}

)
.

The space C([0,+∞);Rd), provided with the distance dul verifies the same properties (see
e.g. [Jacod and Shiryaev, 2013]).
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The Kolmogorov-Chentsov criteria plays an important role in many construction of SDE solu-
tion by limit of approximations.

Theorem I.C.17 (Kolmogorov-Chentsov). Let (Xn
t , t ∈ [0, T ], n = 1, 2, · · · ), a familly of p

càdlàg processes.
The sequence of laws of (Xn) is tight if there exists some positive constants, K, γ and α,
uniform in n, such that

(a) E[|Xn
t −Xn

s |γ] ≤ K|t− s|1+α, 0 ≤ s, t ≤ T,

(b) E[|Xn
t |γ] ≤ K, 0 ≤ t ≤ T

(see e.g, [H. Kinita, 1986], [Karatzas and Shreve, 1988][Chapter 2. Problem 4.11]).
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Chapter II

Introduction to McKean-Vlasov SDEs

II.1 Mean field approximation

II.1.1 Systems of particles with pairwise interactions

Consider a system of N identical particles, interacting in pairs, (molecules, atoms, ions in a
gas or solvent). We assume that these particles can be considered as points, so that describing
the motion of the centre of gravity, the centre of charge, is sufficient (the volume of the particle
is constant). We deal with the description of N state variables

(X,V ) = (X(1,N), V (1,N), . . . X(N,N), V (N,N))

in the phase space Rd × Rd.

Particle by particle, we can start from the following typical system :
dX

(i,N)
t = V

(i,N)

t dt

dV
(i,N)
t = −∇xΦ(X

(i,N)
t )dt−

N∑
j=1;j 6=i

∇xβ(|X(i,N)
t −X(j,N)

t |)dt+ σdW i
t

(II.1)

where (W ) is a Brownian motion in RNd.

Some examples for the potentials Φ and β:

• Coulomb potential (electric field), for a charged particle of charge q, of position x, which undergoes
an ambient field from a source of charge Q at point xQ:

ΦQ(x) =
1

4πε0

qQ

|x− xQ|

where ε0 ' 8.854×1012F.m−11 is a universal constant called the dielectric constant, or permittivity

11 farad (F ) is the capacitance of an insulated electrical conductor for which an addition of 6.241×1018 electrons
causes an increase in its potential of 1 volt.
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of the vacuum. And for two particles of identical charge q located at x and y

βc(x, y) =
1

4πε0

q2

|x− y|
.

• Gravitational field potential, for a particle of mass m, of position x, which undergoes an ambient
field from a source of mass M at the point xM :

ΦM (x) = G
mM

|x− xM |
.

where G is the gravitational constant.

• Lennard-Jones potential: strong interaction between (neutral) atoms in a molecule.

βLJ(|x− y|) = P0

[(
r0

|x− y|

)12

− 2

(
r0

|x− y|

)6
]
.

The attractive term to the 6th power, dominant at long distances, is the Van der Waals interaction.
The repulsive term of exponent 12, dominant at short distances, accounts for the electrostatic re-
pulsion between electrons, which prevents the mutual interpenetration of the electron clouds of two
atoms.

The initial state of the system is described by the distribution PN
0 (dx, dv) over R2dN ; PN

t (dx, dv)
denotes the marginal distribution at time t.

Definition II.1.1 (Symmetric law). Let E be a separable metric space. Let PN be a proba-
bility measure on EN . PN is symmetric on EN if

∀B ∈ B(EN), PN(B1 × · · · ×BN) = PN(Bτ(1) × · · · ×Bτ(N)),

for any permutation τ on N, leaving invariant the complementary of a finite set in {1, . . . , N}.
If PN = L(Y i, i = 1, . . . , N), we say that the variables (Y i) are exchangeable.

Remark II.1.2. • If PN is symmetric, then for Φ : Ek → R bounded measurable, k ≤ N〈
Φ, PN(dy1, . . . , dy

N)
〉

= E [Φ(Y1, . . . , Yk)]

=
(N − k)!

N !

∑
i1 6=i2,..., 6=ik

E[Φ(Yi1 , . . . , Yik)].

• Symmetry plays a significant role in the mean-field approximation and its mathematical justifi-
cation, called the chaos propagation property.
• If the particles are not exchangeable, we cannot write a reduced dynamics for the system.

We assume that the initial distribution PN
0 (X,V ) is symmetric.

Then the distribution PN
t = UN ◦ (X t, V t)

−1 remains symmetric at all times, as the dynamics
(II.1) is invariant by the permutations τ on {1, . . . , N}.

50
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Using the exchangeability of the system, we compute the mean energy of the system E :

E = NE[(V
(1,N)
t )2] +NE[Φ(X

(1,N)
t ) +N(N − 1)Eβ(|X(1,N)

t −X(2,N)
t |)

Even by distributing the energy over the N particles, the energy of a given particle in the system
will tend towards infinity with N , if we do not renormalise the interaction kernel by N or N − 1.

We are interested, in the asymptoticN → +∞, by the reduced dynamics of one particle among
the others, in order not to have to follow the N physical particles at the same time.

Renormalized dynamics:
dX

(i,N)
t = V

(i,N)
t dt

dV
(i,N)
t = −∇xΦ(X

(i,N)
t )− 1

N − 1

N∑
j=1;j 6=i

∇xβ(|X(i,N)
t −X(j,N)

t |)+σdW i
t

and its Fokker-Planck equation (also known in this context as Liouville equation)
∂

∂t
PN +

N∑
i=1

vi
∂

∂xi
PN =

N∑
i=1

∇xΦ(xi)
∂

∂vi
PN +

1

N − 1

N∑
i,j=1;i 6=j

∇xβ(|xi − xj|) ∂

∂vi
PN +

1

2
σ2∆vP

N .

PN
0 given.

Set Ωi = R2d, and define the marginals P i
t on Ω1 × · · · × Ωi by

P 1
t =

∫
Ω2×...×ΩN

PN
t (x1, v1, x2, v2, . . . , xN , vN)dx2dv2 . . . dxNdvN ,

P 2
t =

∫
Ω3×...×ΩN

PN
t (x1, v1, x2, v2, x3, v3, . . . , xN , vN)dx3dv3 . . . dxNdvN

until PN−1
t =

∫
ΩN

PN
t (x1, v1, . . . , xN−1, vN−1, xN , vN)dxNdvN .

We assume that PN
t vanishes on ∂(Ω1× . . .×ΩN) and we integrate the Liouville equation over

Ω2 × . . .× ΩN :∫
Ω2×...×ΩN

N∑
i=1

vi
∂

∂xi
PNdx2dv2 . . . dxNdvN = v1 ∂

∂x1
P 1
t +

N∑
i=2

∫
Ω2×...×ΩN

vi
∂

∂xi
PNdx2dv2 . . . dxNdvN

The second term vanishes. Same for∫
Ω2×...×ΩN

1

N − 1

N∑
i,j=1;i 6=j

∇xβ(|xi − xj|) ∂

∂vi
PNdx2dv2 . . . dxNdvN ,

where only the contribution i = 1 remains:∫
Ω2×...×ΩN

1

N − 1

N∑
j=2

∇xβ(|x1 − xj|) ∂

∂v1
PNdx2dv2 . . . dxNdvN .

51
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Laws being symmetric:∫
Ω2×...×ΩN

∇xβ(|x1 − x2|) ∂

∂v1
PNdx2dv2 . . . dxNdvN

=

∫
Ω2

∇xβ(|x1 − x2|) ∂

∂v1

∫
Ω3×...×ΩN

PNdx3dv3 . . . dxNdvNdx2dv2 =

∫
Ω2

∇xβ(|x1 − x2|) ∂

∂v1
P 2
t dx

2dv2

And we end with
∂

∂t
P 1 + v1 ∂

∂x1
P 1 = ∇xΦ(x1)

∂

∂v1
P 1 +

∫
Ω2

∇xβ(|x1 − x2|) ∂

∂v1
P 2 +

1

2
σ2v1P 1.

P 1
0 given.

This equation for P 1 is unclosed!. If we write the equation for P 2, following the same procedure:

∂

∂t
P 2 + v1 ∂

∂x1
P 2 + v2 ∂

∂x2
P 2

= ∇xΦ(x1)
∂

∂v1
P 2 +∇xΦ(x2)

∂

∂v2
P 2 +

∫
Ω3

∇xβ(|x1 − x2|)
(

∂

∂v1
P 3 +

∂

∂v2
P 3

)
+

1

2
∆v1,v2P

2

and so on. We thus obtain a system of N chained equations, the last one being the Liouville
equation itself for PN .

This system of equations constitutes the BBGKY hierarchy, after the names of the physicists
who established it independently, Bogolioubov (1946), Born (1946), Green (1946), Kirkwood
(1946) and Yvon (1935)

II.1.2 Mean field approximation

This approximation consists in neglecting the correlations in phases, when the number of par-
ticles becomes large, and thus allows us to write that

P 2
t (x1, v1, x2, v2) = P 1

t (x1, v1)P 1
t (x2, v2).

The equation for P 1 then becomes closed: as N tends to infinity,
∂

∂t
P 1 + v1 ∂

∂x1
P 1 ' ∇xΦ(x1)

∂

∂v1
P 1

+
1

2

(∫
Ω2

∇xβ(|x1 − x2|)P 1(dx2, dv2)

)
∂

∂v1
P 1 +

1

2
σ2∆v1P

1.

P 1
0 given.

This PDE is called the Vlasov equation after the physicist who first proposed this type of
reduced dynamics in plasma physics (1936).
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The mathematical justification of the mean field approximation is due to the pioneering work of
Kac (1959) who was interested in another equation also resulting from a BBGKY type hierarchy,
the Boltzmann equation.

Kac introduced the notion of chaos propagation; McKean took up this notion in 1967 to con-
struct McKean non-linear SDE.

Indeed, from the form of the reduced PDE obtained, a reduced SDE is proposed for the position
and the instantaneous velocity of a particle in kinetic form:

dXt = Vtdt
dVt = −∇xΦ(Xt)dt−∇xβ[Xt; pt]dt+ σdWt

pt = P ◦X−1
t

where
∇xβ[x, µ] :=

∫
Rd
∇xβ(x, y)µ(dy).

This reduced model obtained is called a one-point (or one-particle) model.
In physics nowadays, a growing number of second-order approximations are being proposed

to take into account spatial correlation structures. The proposed reduced model is then called a
two-point (or two-particle) model.

II.2 McKean-Vlasov SDEs (and PDEs)

We are interested in the following class of non linear SDEs (in the sense of McKean), having
the following prototypical form. We introduce

σ : Rd × Rd → L(Rr,Rd),

b : Rd × Rd → Rd, mesurable and bounded.

LetM1(Rd) be the set of measure of probability one. We define, for all ρ ∈M1(R), x ∈ Rd,

b[x, ρ] :=

∫
R
b(x, y)ρ(dy),

σ[x, ρ] =

∫
Rd
σ(x, y)ρ(dy) and a[x; p] = σ[x, p]tσ[x, p].

For all T > 0, we want to construct a solution to the following equation Xt = X0 +

∫ t

0

σ[Xs, Ps]dWs +

∫ t

0

b[Xs, Ps]ds, for 0 ≤ t ≤ T ,

Pt = P ◦X−1
t ,

(II.2)

on a propabilistic space (Ω,F , (Ft, t ≥ 0),P), endowed with a Brownian motion W of dimen-
sion r and with a r.v X0, F0-measurable, of law P0.
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• Even if b and σ are not time-dependent functions, the SDE (II.2) could not be considered as a
time-homogeneous problem. In particular, (X) alone is not a Markov process, as the coefficients
keep the memory of the past, via the law dependency

Example : the solution of

dXt = C(E(Xt)−Xt)dt+ dWt;X0 given

behaves differently from

dYt = C(m− Yt)dt+ dWt;X0 given.

Il particular for all t > 0, E[Xt] = E[X0], but E[Yt] = E[X0] exp(−Ct) + m(1 − exp(−Ct)).
Both solutions only coincide for m = E[X0].

• A solution(X) to (II.2) is also a solution to

Xt = X0 +

∫ t

0

Ẽ [σ(Xs, Ys)] dWs +

∫ t

0

Ẽ [b(Xs, Ys)] ds, 0 ≤ t ≤ T,

where Y is a copy of X , on another probability space (Ω̃, F̃ , (F̃t), P̃)).

The associated Vlasov-Fokker-Planck euqation

Given a solution to the SDE (II.2), the marginal laws (Pt, t ∈ [0, T ]) are solution in the distri-
bution sense of the parabolic PDE

∂Pt
∂t

=
1

2

d∑
i,j=1

∂2

∂xi∂xj
(ai,j[x;Pt]Pt)−

d∑
i=1

∂

∂xi
(bi[x;Pt]Pt) in Rd,

P0 given.

(II.3)

(II.3) is a Vlasov-Fokker-Planck equation . In particular it conserves the total mass. Indeed, for
BR = {‖y‖d ≤ R},

d

dt

∫
BR

Pt(dx) =

∫
BR

div
(
∂xja · ,j[x;Pt]Pt − b[x, Pt]Pt

)
dx.

Using divergence Theorem I.B.1, assuming that the measures Pt do not charge mass at infinity,
we get

d

dt

(∫
BR

Pt(dx)

)
=

∫
{y=R}

(
(∂xja · ,j[x;Pt]Pt − b[x, Pt]Pt) ·n(y)

)
−→
R→+∞

0.

So, if P0 is a of mass one, it is also the case for Pt, for t ≥ 0.
For all finite T > 0 fini, (Pt, t ∈ [0, T ]) is a weak solution of (II.3), if for all φ ∈ C2

c (Rd),

d

dt
〈Pt, φ〉 =

〈
Pt,

1

2

∑
i,j

aij[x;Pt]
∂2φ

∂xi∂xj
(x) +

d∑
i=1

bi[x;Pt]
∂φ

∂xi
(x)

〉
. (II.4)
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This weak solution formulation for the PDE makes appear the differential operator

L[p]φ(x) =
1

2

∑
i,j

aij[x; p]
∂2φ

∂xi∂xj
(x) +

d∑
i=1

bi[x; p]
∂φ

∂xi
(x)

as the infinitesimal generator for the McKean SDE.

Theorem II.2.1. We assume that

(a) the kernel-coefficients b(x, y) and σ(x, y) are continuous and bounded functions on R2d.

(b) E|X0|β <∞, for a β > 0. We denote by P0 the law of X0.

Then for all T < +∞, there exists a weak solution to the McKean SDE (II.2).

We come back later on the proof of this theorem. We first introduce the tools for the propagation
of chaos method.

II.3 Propagation of Chaos

Let (E, E) a measurable space, endowed with it sigma-algebra B ;M1(E) is the set of proba-
bility measure on E.

The mathematical justification of the mean field approximation is due to the pioneering work
of [Kac, 1954] who was interested in the BBGKY hierarchy, also produced by the Boltzmann
equation (the integro-differential equation of the kinetic theory of a sparse non-equilibrium gas).
Kac introduces the notion of chaos propagation, the modern presentation made here is due to
[Sznitman, 1991b].

Definition II.3.1 (Weak convergence of measures). Let (E, E) a probability space.
A sequence of finite measures µn on E converge weakly to the measure µ, if for all functions
f continuous and bounded on E, f ∈ Cb(E),

〈f, µn〉 =

∫
E

f(x)µn(dx) −→
n→+∞

〈f, µ〉 =

∫
E

f(x)µ(dx).

Now let (E, dE) be a separable metric space, endowed with its distance dE . B(E) is the Borel
sigma algebra of E. We denote by (X i, i = 1 . . . N) the canonical coordinates on EN , N ∈ N.
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Definition II.3.2 (Chaoticity). Let (UN , N ∈ N) a sequence of symmetric probability mea-
sures on EN .
Let u a probability measure on E.
We say that the sequence (UN , N ∈ N) is u-chaotic if, for all k ≥ 1, for all functions
φ1, . . . , φk in Cb(E).

lim
N→+∞

〈
UN , φ1 ⊗ . . .⊗ φk⊗1 . . .⊗ 1︸ ︷︷ ︸

N−k⊗

〉
=

k∏
i=1

〈u, φi〉,

or equivalently

lim
N→+∞

EUN [φ1(X1)× . . .× φk(Xk)] =
k∏
i=1

Eu[φi(X)]

Above, X is the canonical coordinate on E.
Thus, in the limit N → +∞, the k marginal laws of (UN) are iid, of law u.

We denote

µN =
1

N

N∑
i=1

δXi

the empirical measure associated to UN .
• µN is a r.v. on (EN , UN) valued inM1(E).

Theorem II.3.3. The sequence (UN , N ∈ N) is u-chaotic if and only if the sequence of
variable (µN , N) valued in M1(E) converges in law to u. In other words, we have the
convergence of L(µN) weakly inM1(M1(E)) toward δu when N → +∞.

Definition II.3.4 (Tight family of probabilities). Let (E, d) a metric space. A family {Pα} of
probabilities on (E,B(E)) is tight, if for all ε > 0, there exists a compact set K ⊆ E such
that

sup
α

Pα(E −K) ≤ ε.

The family of the Pα support stay concentrated on a compact K.

Definition II.3.5 (Relative compactness). {Pα} is relatively compact is all sequences of {Pα}
contains a weak converging sub-sequence.
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Theorem II.3.6 (Prokhorov’s Theorem). Let (E, d) a completea and separableb

The family {Pα} on (E,B(E)) is tight if and only if {Pα} is relatively compact.

aE is said to be complete if every Cauchy sequence ofE has a limit inE. The completeness property depends
on the distance.

bA separable space is a topological space containing a finite or countable and dense subset, i.e. containing a
finite or countable set of points whose closure is equal to the whole topological space.

Lemma II.3.7 (Tension criterion for propagation of chaos ([Sznitman, 1991b]) ). When (E, d)
is complete and separable, the random variables (µN , N ≥ 1) with values inM1(E) are tight
(i.e. the laws L(µN) are tight) if-and-only-if the laws on E of X1 under UN are tight.

Proof of theorem II.2.1. The proof consists in construct a solution Q to the martingale problem
associated to (L[ · ], P0) where, for all p ∈M1(Rd),

L[p]φ(x) =
1

2

∑
i,j

aij[x; p]
∂2φ

∂xi∂xj
(x) +

d∑
i=1

bi[x; p]
∂φ

∂xi
(x).

Definition II.3.8. Q ∈ M1(CT ) is a solution to the martingale problem associated to
(L[ · ], µ) if

(i) Q0 = µ.

(ii) For all f ∈ C2
b (Rd),

Mf
t = f(x(t))− f(x(0))−

∫ t

0

(
L[Qθ]f

)
(x(θ))dθ

is a Q-martingale.

•We consider the space (Rd × C(R+;Rd),B(Rd × C(R+;Rd))N
∗ endowed with the product

measure (P0 ⊗W)⊗N
∗ , where P0 = L(X0) andW is the Wiener measure of dimension d ∧ r.

We consider the family of processes ((X i,n, i = 1, . . . , n), n ∈ N∗) solution to

X i,n
t = X i

0 +

∫ t

0

σ[X i,n
s ;µns ]dW i

s +

∫ t

0

b[X i,n
s ;µns ]ds (II.5)

t ∈ R+, i ∈ {1, . . . , n},

where (X i
0,W

i, i ∈ N∗) are the canonical coordinates on ((Rd×C(R+;Rd),B(Rd×C(R+;Rd)))N
∗

and where

µn· =
1

n

∑
j=1

δXj,n· ∈M
1(C(R+,Rd)).
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Equivalently

X i,n
t = X i

0 +

∫ t

0

σ[X i,n
s ;µns ]dW i

s +

∫ t

0

b[X i,n
s ;µns ]ds, t ∈ R+, i ∈ {1, . . . , n},

or, in a vectorial form

X t = X0 +

∫ t

0

Σ(Xs)dW s +

∫ t

0

B(Xs)ds

withB and Σ continuous and bounded, and the initial conditionX0 admitting a positive moment.
Applying theorem I.3.8, we get the existence of a solution to the linear system of size n.

•The next step consists in applying the tightness criterion in Lemma II.3.7.
We use the Kolmogorov Chentsov criterion I.C.17 for Itô processes :

Exercise II.1. Applying the Itô formula, to prove that, for 0 ≤ s ≤ t ≤ T ,

‖X1,n
t −X1,n

s ‖4 ≤ C|t− s|2.

Applying Lemma II.3.7, we get the tightness of the sequence of the laws (L(X1,n, n), and so
that the laws of the (µn, n) r.v. are tight inM1(M1(CT )).

Let denote by (Qn = L(µn), n) a converging sub sequence, and let Q∞ the limit of the sub
sequence, still indexed by n.

We consider the infinitesimal generator

L(p)φ(x) =
1

2

∑
i,j

aij[x; p]
∂2φ

∂xi∂xj
(x) +

d∑
i=1

bi[x; p]
∂φ

∂xi
(x).

And we recall the following characterization of the conditioning by σ{xθ; 0 ≤ θ ≤ s}:

E [Mt −Ms|σ{xθ; 0 ≤ θ ≤ s}] = 0

⇔
∀l ∈ N∗,∀g ∈ Cb(Rld), ∀0 ≤ t1 < . . . < tl < s;E [(Mt −Ms)g(x(t1), . . . , g(x(tl))] = 0.

For a given f ∈ C2
b (Rd), and 0 ≤ s ≤ t ≤ T .

We also fix an arbitrary l ∈ N∗, a g ∈ Cb(Rld) and a l-partition, 0 ≤ t1 < . . . < tl < s.
We consider the application m 7→ F (m) onM1(CT ), defined by

F (m) =

〈
m,

(
f(x(t))− f(x(s))−

∫ t

s

L(mθ)f(xθ)dθ

)
× g(x(t1), . . . , g(x(tl))

〉

F is continuous onM1(CT ), par the continuity of the coefficients b and σ, of f and derivates,
of g, and of and of coordinates applications m→ mθ.
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•Let show that, for Q∞ almost m, F (m) = 0, then m is solution to the MP and II.2.1 is
proven.
F being continuous,

EQ∞|F | = lim
n→+∞

EQn|F |

= lim
n→+∞

E

∣∣∣∣∣ 1n
n∑
i=1

{
f(X i,n

t )− f(X i,n
s )−

∫ t

s

L(µnθ )f(X i,n
θ )dθ

}
g(X i,n

t1 , . . . , X
i,n
tl

)

∣∣∣∣∣ .
From the Itô formula,

EQ∞|F | = lim
n→+∞

E

∣∣∣∣∣
(

1

n

n∑
i=1

∫ t

s

d∑
j=1

∂xjf(X i,n
θ )

r∑
k=1

σj,k[X i,n
θ , µnθ ]dW

i,(k)
θ

)
g(X i,n

t1 , . . . , X
i,n
tl

)

∣∣∣∣∣
≤ ‖g‖∞ lim

n→+∞
E

∣∣∣∣∣ 1n
n∑
i=1

∫ t

s

d∑
j=1

∂xjf(X i,n
θ )

r∑
k=1

σj,k[X i,n
θ , µnθ ]dW

i,(k)
θ

∣∣∣∣∣
Now using the Itô isometry ,

E

(
1

n

n∑
i=1

∫ t

s

d∑
j=1

∂xjf(X i,n
θ )

r∑
k=1

σj,k[X i,n
θ , µnθ ]dW

i,(k)
θ

)2

= E

(
1

n2

n∑
i=1

∫ t

s

d∑
j=1

(
∂xjf(X i,n

θ )
)2

r∑
k=1

(
σj,k[X i,n

θ , µnθ ]
)2
dθ

)

≤ ‖∇f‖2‖σ‖2C(t)
1

n
.

So we get

lim
n→+∞

EQn|F | ≤ lim
n→+∞

C(T )
1√
n

= 0.

We have just constructed a solution to the martingale problem, by converging the system of
particles.

If we have uniqueness of the solution u to the martingale problem, then we can conclude that
Q∞ = δu, which implies that the particle system is u-chaotic.

Without additional regularity assumptions on b and σ to run some contraction argument, to
obtain the uniqueness of the solution of the martingale problem it is then difficult to do without
the uniqueness of the distributional solution to the McKean Vlasov PDE (II.3).
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The 31st Jyväskylä Summer School / Course MA3 / August, 8 to 12, 2022 / Mireille Bossy


	Introduction and motivation: fluid mechanics and stochastic processes
	Some basic notions of fluid mechanics and the Navier Stokes equations
	The conservation of mass
	The momentum equation

	Complex flows : from laminar flows to turbulent flows
	The Reynolds Navier Stokes equations. 

	When stochasticity comes in the story : Lagrangian fluctuation
	Fluid particle
	Models at the microsclale (DNS) view point. 
	Model for turbulent closure : Macroscale view point and PDF approach, Fokker Planck equation
	About uniqueness result for martingale problem

	Particle-laden flows
	Particle dynamics 
	Statistical descriptions of single-phase turbulence
	Langevin model for dispersed particles embedded in a turbulent flows using a dynamic PDF model



	Appendices
	Material derivative
	The normal to a 3D surface and Divergence Theorem
	Selected reminders of probability theory and stochastic processes
	Filtration and adaptation
	Example

	Martingales in continuous time
	Doob's maximal inequality: 
	GBD Inequality for Martingales
	Lévy characterisation of Brownian motion
	Itô integral
	Itô formula
	Tightness criteria

	Bibliography

	Introduction to McKean-Vlasov SDEs
	Mean field approximation
	Systems of particles with pairwise interactions
	Mean field approximation

	McKean-Vlasov SDEs (and PDEs)
	Propagation of Chaos
	Bibliography


